参考文献/References:
[1]储成才,王毅,王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学:生命科学,2021,51(10):1415-1423.
[2]王一琨,蔡泽江,冯固. 不同磷肥调控措施下红壤磷素有效性和利用率的变化[J]. 土壤学报,2023,60(1):235-246.
[3]胡云峰. 长期不同施肥措施对旱地红壤剖面磷素形态变化与累积的影响[D]. 合肥:安徽农业大学,2022.
[4]赵隽宇,潘波,唐健,等. 长期施用袋控缓释肥对南方红壤中磷素形态及有效性的影响[J]. 农学学报,2022,12(11):14-19.
[5]苏丽珍,赵红敏,侯贤锋. 玉米大豆间作对红壤磷库的活化作用及其磷肥响应[J]. 中国生态农业学报,2023,31(4):558-566.
[6]郭晓双. 磷素营养水平对大豆磷素积累和产量的影响[D]. 哈尔滨:东北农业大学,2014.
[7]张登晓,高雅,介红彬,等. 生物质炭对农田磷有效性的影响研究进展[J]. 河南农业大学学报,2021,55(2):199-205.
[8]SHARMA S B, SAYYED R Z, TRIVEDI M H, et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. Springer Plus,2013,2(1):587.
[9]鲁如坤,刘鸿翔,闻大中. 我国典型地区农业生态系统养分循环和平衡研究全国和典堺地区养分循环和平衡现状[J]. 土壤通报,1996,27(5):193-196.
[10]龚子同. 人为作用对土壤环境质量的影响及对策[J]. 土壤与环境,2000,9(1):7-10.
[11]LEHMANN J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment,2007,5:381-387.
[12]高雅,饶伟,介红彬,等. 不同质地潮土施用小麦和玉米秸秆生物质炭对玉米养分吸收和根际土壤胞外酶活性的影响[J]. 植物营养与肥料学报,2022,28(5):933-945.
[13]LIU S N, MENG J, JIANG L L, et al. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types[J]. Applied Soil Ecology,2017,116:12-22.
[14]ZHAI L M, CAIJI Z M, LIU J, et al. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities[J]. Biology and Fertility of Soils,2015,51:113-122.
[15]ZWETSLOOT J, LEHMANN J, BAUERLE T, et al. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions[J]. Plant and Soil,2016,408:95-105.
[16]ANDERSN C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia,2011,54:309-320.
[17]赵学通,包立,康宏宇,等. 秸秆生物炭对亚热带葡萄园土壤性质的影响[J]. 中国农学通报,2015,31(6):104-108.
[18]LIU S N, MENG J, JIANG L L, et al. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types[J]. Applied Soil Ecology,2017,116:12-22.
[19]盛荣,肖和艾,谭周进,等. 土壤解磷微生物及其磷素有效性转化机理研究进展[J]. 土壤通报,2010,41(4):1505-1510.
[20]STALSTROM V A, BOITRAG Z K, EIN W, et al. Steriler use in garung bofindlicher organischer stroffe auf dil loslichkeit der phosphorson des tricalcium phosphate[J]. Zel Bakt,1903(11):724-732.
[21]陈敏,杜相革. 生物炭对土壤特性及烟草产量和品质的影响[J]. 中国土壤与肥料,2015(1):80-83.
[22]FRASER T, LYNCH D H, BENT E, et al. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management[J]. Soil Biology and Biochemistry,2015,88:137-147.
[23]FRASER T, LYNCH D H, ENTZ M H, et al. Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial[J]. Geoderma,2015,257/258:115-122.
[24]CHEN X D, JIANG N, CHEN Z H, et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials[J]. Applied Soil Ecology,2017,119:197-204.
[25]LUO G W, SUN B, LI L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD-and phoC-harboring functional microbial populations[J]. Soil Biology and Biochemistry,2019,139:107632.
[26]易艳梅,黄为一. 溶磷细菌Enterobacteria sp EnHy-401对盐渍土壤中小麦生长的影响[J]. 土壤通报,2011,42(6):1371-1375.
[27]王敦刚,张俏燕,曹文超,等. 不同土地利用方式对土壤磷有效性和溶磷细菌群落结构的影响[J]. 热带作物学报,2021,42(12):3646-3654.
[28]RAFIQUE M, SULTAN T, ORTAS I, et al. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil[J]. Soil Science and Plant Nutrition,2017,63(5):460-469.
[29]ZHENG B X, DING K, YANG X R, et al. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake[J]. Science of the Total Environment,2019,647:1113-1120.
[30] WU F, LI J R, CHEN Y L, et al. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel[J]. Forests,2019,10:348.
[31]WARNOCK D D, LEHMANN J, KUYPER T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil,2007,300:9-20.
[32]QUILLIAM R S, GLANVILLE H C, WADE S C, et al. Life in the ‘charosphere’ -does biochar in agricultural soil provide a signifcant habitat for microorganisms?[J]. Soil Biology and Biochemistry,2013,65:287-293.
[33]SINGH H, NORTHUP B K, RICE C W, et al. Biochar applications infuence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis[J]. Biochar,2022,4:8.
[34]SIDDIQUI A R, NAZEER S, PIRACHA M A, et al. The production of biochar and its possible effects on soil properties and phosphate solubilizing bacteria[J]. Journal of Applied Agriculture and Biotechnology,2016,1(1):27-40.
[35]COLLAVINO M M, SANSBERRO P A, MROGINSKI L A, et al. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils,2010,46:727-738.
[36]FOX A, KWAPINSHI W, GRIFFITHS B S, et al. The role of sulfur- and phosphorus- mobilizing bacteria in biochar-induced growth promotion of Lolium perenne[J]. FEMS Microbiology Ecology,2014,90(1):78-91.
[37]FOX A, GAHAN J, KWAPINSKI O, et al. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria[J]. Pedobiologia,2016,59:195-202.
[38]马凯,王效昌,谢嘉慧,等. 沉积物解磷菌的研究进展:分布、解磷能力及功能基因[J]. 农业资源与环境学报,2022,40(1):76-85.
[39]魏晓梦. 中国典型农田土壤解磷菌群落构建机制[D]. 长沙: 中国科学院亚热带农业生态研究所,2020.
[40]LIU X, ZHENG J, ZHANG D, et al. Biochar has no effect on soil respiration across Chinese agricultural soils[J]. Science of the Total Environment,2016,554:259-265.
[41]郑慧芬,吴红慧,翁伯绮,等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料,2019(2):68-74.
[42]YANG C D, LU S G. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol[J]. Science of the Total Environment,2022,805:150325.
[43]PU J H, JIANG N, ZHANG Y L, et al. Effects of various straw incorporation strategies on soil phosphorus fractions and transformations[J]. GCB-Bioenergy,2023,15:88-98.
[44]LIU L, ZHANG S R, CHEN M M, et al. Femodified biochar combined with mineral fertilization promotes soil organic phosphorus mineralization by shifting the diversity of phoD harboring bacteria within soil aggregates in saline alkaline paddy soil[J]. Journal of Soils and Sediments,2023,23:619-633.
[45]GAO S, DELUCA T H. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands[J]. Soil Biology and Biochemistry,2018,126:144-150.
[46]TIAN J H, KUANG X Z, TANG M T, et al. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition[J]. Science of the Total Environment,2021,779:146556.
[47]杨文娜,余泺,罗东海,等. 土壤phoC和phoD微生物群落对化肥和有机肥配施生物炭的响应[J]. 环境科学,42(2):1040-1049.
[48]RODRíGUEZ H, FRAGA R, GONZALEZ T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria[J]. Plant and Soil,2006,287:15-21.
[49]LENNON J T, JONES S E. Microbial seed banks: the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology,2011,9:119-130.
[50]池景良,郝敏,王志学,等. 解磷微生物研究及应用进展[J]. 微生物学杂志,2021,41(1):1-7.
[51]杜慧婷. 生物炭对胶质芽孢杆菌(Bacillus Mucilaginosus)和巨大芽孢杆菌(Bacillus Megaterium)活性的影响及解磷机制[D]. 沈阳:沈阳农业大学,2020.
[52]朱青和,马壮,裘立,等. 竹炭和竹炭包膜复合肥对毛竹林土壤磷有效性的影响及其微生物学机理[J]. 植物营养与肥料学报,2022,28(3):450-459.
[53]LU H W, XU C X, ZHANG J C, et al. The characteristics of alkaline phosphatase activity and phoD gene community in heavy-metal contaminated soil remediated by biochar and compost[J]. Bulletin of Environmental Contamination and Toxicology,2022,109:298-303.
[54]杨文娜,余泺,罗东海,等. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响[J]. 环境科学,2022,43(1):540-548.
[55]邓金环. 生物炭改良酸性土壤及提高大豆硅磷吸收转化的机理研究[D]. 广州:华南农业大学,2019.
[56]刘赛男. 生物炭影响土壤磷素、钾素有效性的微生物生态机制[D]. 沈阳:沈阳农业大学,2016.
[57]WANG Y Z, ZHANG Y P, ZHAO H, et al. The effectiveness of reed-biochar in mitigating phosphorus losses and enhancing microbially-driven phosphorus dynamics in paddy soil[J]. Journal of Environmental Management,2022,314:115087.
[58]ZHANG C S, LIN Y, TIAN X Y, et al. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance[J]. Applied Soil Ecology,2017,112:90-96.
[59]闫庚戌,范丙全. 磷肥用量对土壤中溶磷青霉菌P8接种效果的影响[J]. 中国土壤与肥料,2020(1):82-90.
[60]梁利宝,谢英荷,胡建华. 土著微生物对解磷微生物解磷效果影响的研究[J]. 山西农业大学学报(自然科学版),2006,26(2):155-158.
[61]CORDERO O X, DATTA M S. Microbial interactions and community assembly at microscales[J]. Current Opinion in Microbiology,2016,31:227-234.
[62]SAXENA J, RANA G, PANDEY M. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans[J]. Scientia Horticulturae,2013,162:351-356.
[63]BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology,2018,16:567-576.
[64]CHEN L J, JIANG Y J, LIANG C, et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments[J]. Microbiome,2019,77(7):129-135.
[65]马泊泊,黄瑞林,张娜,等. 秸秆生物质炭对根际土壤细菌-真菌群落分子生态网络的影响[J]. 土壤学报,56(4):964-974.
[66]MASTO R E, KUMAR S, ROUT T K, et al. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity[J]. Catena,2013,111:64-71.
[67]BHADURI D, SAHA A, DESAI D, et al. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study[J]. Chemosphere,2016,148:86-98.
[68]XU M, GAO P, YANG Z, et al. Biochar impacts on phosphorus cycling in rice ecosystem[J]. Chemosphere,2019,225:311-319.
[69]OLEZCZUK P, JOSKO I, KUSMIERZ M, et al. Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content[J]. Geoderma,2014,213:502-511.
[70]DEB D, KLOFT M, LSSIG J, et al. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions[J]. Agroecology and Sustainable Food Systems,2016,40(2):145-168.