参考文献/References:
[1]刘吉伟,魏鸿磊,裴起潮,等. 采用相关滤波的水下海参目标跟踪[J]. 智能系统学报, 2019, 77(3): 525-532.
[2]李娟,朱学岩,葛凤丽,等. 基于计算机视觉的水下海参检测方法研究[J]. 中国农机化学报, 2020, 41(7): 171-177.
[3]强伟,贺昱曜,郭玉锦,等. 基于改进SSD的水下目标检测算法研究[J]. 西北工业大学学报, 2020, 38(4): 747-754.
[4]林宇,何水原. 改进Cascade RCNN的水下目标检测[J]. 电子世界, 20221(1):105-108.
[5]马孔伟. 基于CNN的海参检测技术及其在水下机器人中的应用[D]. 哈尔滨:哈尔滨工业大学, 2019: 56.
[6]王璐,王雷欧,王东辉. 基于Faster-rcnn的水下目标检测算法研究[J]. 网络新媒体技术, 2021, 10(5): 43-51,58.
[7]徐建华,豆毅庚,郑亚山. 一种基于YOLO-V3算法的水下目标检测跟踪方法[J]. 中国惯性技术学报, 2020, 28(1): 129-133.
[8]张聪辉. 基于YOLO-v3的海参目标检测系统的设计与实现[D]. 哈尔滨:哈尔滨工程大学,2020.
[9]朱世伟,杭仁龙,刘青山. 基于类加权YOLO网络的水下目标检测[J]. 南京师大学报(自然科学版), 2020, 43(1): 129-135.
[10]WANG J, LU K, XUE J, et al. Single image dehazing based on the physical model and MSRCR algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(9): 2190-2199.
[11]LIU Y, YAN H, GAO S, et al. Criteria to evaluate the fidelity of image enhancement by MSRCR[J]. IET Image Processing, 2018, 12(6): 880-887.
[12]许伟栋,赵忠盖. 基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018, 34(6): 1378-1385.
[13]KUMARI N, RUF V, MUKHAMETOV S, et al. J mobile eye-tracking data analysis using object detection via YOLO v4[J]. Sensors,2021,21(22): 7668.
[14]张开兴,吕高龙,贾浩,等. 基于图像处理和BP神经网络的玉米叶部病害检测[J]. 中国农机化学报, 2019, 40(8): 122-126.
[15]尚志军,张华,曾成,等. 基于机器视觉的枳壳自动定向方法与试验[J]. 中国农机化学报, 2019, 40(7): 119-124.
[16]LIU S, XU Y, GUO L M, et al. Multi-scale personnel deep feature detection algorithm based on Extended-YOLOv3[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(1): 773-786.
[17]JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing,1997, 6(7): 965-976.
[18]WANG Q Z, LI S, QIN H, et al. Super-resolution of multi-observed RGB-D images based on nonlocal regression and total variation[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2016, 25(3): 1425-1440.
[19]ZHANG M H, XU S B, SONG W, et al. Lightweight underwater object detection based on YOLOv4 and multi-scale attentional feature fusion[J]. Remote Sensing,2021,13(22): 4706.
[20]TAN L, HUANGFU T R, WU L, et al. Comparison of RetinaNet, SSD, and YOLOv3 for real-time pill identification[J]. BMC Medical Informatics and Decision Making,2021,21(1): 1-11.
[21]ZHANG M, XU S, SONG W, et al. Lightweight underwater object detection based on YOLO v4 and multi-scale attentional feature fusion[J]. Remote Sensing, 2021, 13(22): 4706.
[22]朱 磊. Retinex图像增强算法的研究与FPGA实现[D]. 北京:清华大学, 2012.
[23]朱秋旭,李俊山,朱英宏,等.Retinex理论下的自适应红外图像增强[J]. 微电子学与计算机, 2013, 30(4): 22-25.
[24]陈旭君,王承祥,朱德泉,等. 基于YOLO卷积神经网络的水稻秧苗行线检测[J].江苏农业学报,2020,36(4):930-935.
[25]LEI F, TANG F, LI S. Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering,2022, 10:310.
[26]QIAO X, BAO J, ZHANG H, et al. fvUnderwater sea cucumber identification based on principal component analysis and support vector machine[J]. Measurement,2019, 133:444-455.
[27]ZHANG L, XING B, WANG W et al. Sea cucumber detection algorithm based on deep learning[J]. Sensors,2022, 22:5717.
[28]XUE L, ZENG X, JIN A. A novel deep-learning method with channel attention mechanism for underwater target recognition [J]. Sensors,2022, 22:5492.
[29]孟亮,郭小燕,杜佳举,等. 一种轻量级CNN农作物病害图像识别模型[J].江苏农业学报,2021,37(5):1143-1150.
相似文献/References:
[1]李恒,南新元,高丙朋,等.一种基于GhostNet的绿色类圆果实识别方法[J].江苏农业学报,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
LI Heng,NAN Xin-yuan,GAO Bing-peng,et al.A green round-like fruits identification method based on GhostNet[J].,2023,(07):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
[2]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(07):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]