[1]郭铭淇,包云轩,黄璐,等.无人机多光谱影像在稻纵卷叶螟危害监测中的应用[J].江苏农业学报,2023,(07):1530-1542.[doi:doi:10.3969/j.issn.1000-4440.2023.07.010]
 GUO Ming-qi,BAO Yun-xuan,HUANG Lu,et al.Application of multispectral image taken by unmanned aerial vehicle in monitoring Cnaphalocrocis medinalis Güenée damage on rice growth[J].,2023,(07):1530-1542.[doi:doi:10.3969/j.issn.1000-4440.2023.07.010]
点击复制

无人机多光谱影像在稻纵卷叶螟危害监测中的应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年07期
页码:
1530-1542
栏目:
农业信息工程
出版日期:
2023-10-31

文章信息/Info

Title:
Application of multispectral image taken by unmanned aerial vehicle in monitoring Cnaphalocrocis medinalis Güenée damage on rice growth
作者:
郭铭淇123包云轩123黄璐123陈晨123杨荣明4朱凤4
(1.南京信息工程大学气象灾害预报和评估协同创新中心,江苏南京210044;2.江苏省农业气象重点实验室/南京信息工程大学应用气象学院,江苏南京210044;3.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室,江苏南京210044;4.江苏省植物保护站,江苏南京210013)
Author(s):
GUO Ming-qi123BAO Yun-xuan123HUANG Lu123CHEN Chen123YANG Rong-ming4ZHU Feng4
(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.Jiangsu Key Laboratory of Agricultural Meteorology/School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;3.Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044;4.Plant Protection Station in Jiangsu Province, Nanjing 210013, China)
关键词:
稻纵卷叶螟无人机遥感植被指数多光谱影像反演模型
Keywords:
Cnaphalocrocis medinalis Güenéeremote sensing of unmanned aerial vehicle (UAV)vegetation indexmultispectral imageinversion model
分类号:
TP79
DOI:
doi:10.3969/j.issn.1000-4440.2023.07.010
文献标志码:
A
摘要:
为探讨利用无人机多光谱影像监测稻纵卷叶螟危害的可行性,本研究于2021年6-10月开展了无人机对稻纵卷叶螟危害和田间水稻生育状况的同步观测试验,分析了15种植被指数与卷叶率(虫害指标)之间的相关关系;分别采用普通最小二乘法、多项式拟合、多元逐步回归法和偏最小二乘法建立了水稻分蘖期、拔节期和孕穗期的卷叶率反演模型;在此基础上,筛选出最优模型并分析卷叶率与水稻生理生态参数之间的关联。结果表明,(1)3个生育期的大部分植被指数与卷叶率存在极显著的相关性,每个生育期卷叶率与均一化植被指数(NDVI)的相关性都是最高的。(2)分蘖期的卷叶率反演模型效果最好,孕穗期的模型较好,拔节期的模型效果稍差。(3)在分蘖期,稻纵卷叶螟对水稻的危害反映在叶绿素浓度的下降和叶色的变化;在拔节期,虫害会引起水稻的补偿反应,导致叶绿素含量和叶面积增加;在孕穗期虫害对水稻生长的危害主要表现为叶绿素含量下降。本研究结果可为无人机遥感技术在区域范围内精确识别稻纵卷叶螟危害提供重要的参考。
Abstract:
To explore the feasibility of using multispectral images taken by unmanned aerial vehicles (UAV) to monitor the damage of rice leaf folder (Cnaphalocrocis medinalis Güenée), a set of synchronous observation experiments on the damage of C. medinalis and rice growth status in paddy fields were conducted by using UAV, during the period from June to October in 2021. Correlations between 15 spectral vegetation indexes and leaf-roll rate (insect damage index) of C. medinalis were analyzed. Inversion models for the leaf-roll rates during the tillering stage, jointing stage and booting stage of rice were established by using the ordinary least square method, polynomial fitting, multiple stepwise linear regression method and partial least square method respectively. The optimal model was selected, and the relationships between leaf-roll rate and rice physiological and ecological parameters were analyzed. The results showed that, firstly, during the three growth stages, most of the vegetation indexes showed extremely significant correlations with the leaf-roll rate, and during each growth stage the correlation between leaf-roll rate and normalized difference vegetation index (NDVI) was the highest. Secondly, during the tillering stage, effect of the leaf-roll rate inversion model was the best, followed by models for the booting stage, but the model for the jointing stage was slightly worse. Thirdly, during the tillering stage, the damage of C. medinalis to rice reflected in decreasing of chlorophyll concentration and changing of leaf color. During the jointing stage, damage of C. medinalis might cause compensatory response in rice, resulting in increasing of chlorophyll content and leaf area. During the booting stage, the damage of C. medinalis to rice growth mainly presented as the decreasing of chlorophyll content. The research results can provide important reference for using UAV remote sensing technology to identify the damage of C. medinalis accurately in regional range.

参考文献/References:

[1]KUMAR S P, AKSHAY N, PREETI A, et al. Prospects of understanding the molecular biology of disease resistance in Rice[J]. International Journal of Molecular Sciences, 2018, 19(4): 1141.
[2]MATTESON P C. Insect pest management in tropical Asian irrigated rice[J]. Annual Review of Entomology, 2000, 45(1): 549-574.
[3]PADMAVATHI C, KATTI G, PADMAKUMARI A P, et al. The effect of leaffolder Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) injury on the plant physiology and yield loss in rice[J]. Journal of Applied Entomology, 2013, 137(4): 249-256.
[4]WAN N F , JI X Y , CAO L M ,et al. The occurrence of rice leaf roller, Cnaphalocrocis medinalis Guenée in the large-scale agricultural production on Chongming Eco-island in China[J].Ecological Engineering, 2015, 77: 37-39.
[5]ZHANG S K, REN X B, WANG Y C, et al. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides[J]. Journal of Economic Entomology, 2014, 107(2): 815-820.
[6]刘欢,侯茂林. 稻纵卷叶螟发生为害与寄主植物间关系的研究进展[J]. 应用昆虫学报, 2019, 56(6): 1178-1185.
[7]CHINTALAPATI P, GURURAJ K, VALLABUNI S, et al. Physiological age status of female adults and off-season survival of rice leaf-folder Cnaphalocrocis medinalis in India[J]. Rice Science, 2015, 22(5): 237-244.
[8]张海维,姜硕琛,孔盼,等. 不同稻作模式下品种混作对稻纵卷叶螟发生和水稻生长的影响[J]. 生态学杂志, 2021, 40(9): 2783-2792.
[9]刘杰,曾娟,杨清坡,等. 2023年农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2023, 43(1): 32-35.
[10]BASHIR K, REHMAN M, BARI M. Detection and classification of rice diseases: an automated approach using textural features[J]. Mehran University Research Journal of Engineering and Technology, 2019, 38(1): 239-250.
[11]ANNE-KATRIN M. Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping[J]. Plant Disease, 2016, 100(2): 241-251.
[12]LIN F F, GUO S, TAN C W, et al. Identification of rice sheath blight through spectral responses using hyperspectral images[J]. Sensors (Basel, Switzerland), 2020, 20(21): 6243.
[13]HAN Y, LIU H J, ZHANG X L, et al. Prediction model of rice panicles blast disease degree based on canopy hyperspectral reflectance[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1220-1226.
[14]SANTOSH K U, AVADHESH K. A novel approach for rice plant diseases classification with deep convolutional neural network[J]. International Journal of Information Technology, 2022, 14: 185-199.
[15]LIU W F, YU L, LUO J X. A hybrid attention-enhanced DenseNet neural network model based on improved U-Net for rice leaf disease identification[J]. Frontiers in Plant Science, 2022, 13: 922809.
[16]LIU L S, PENG Y L, ZENG L G, et al. Application of sex attractants in the control of rice stem borer and rice leaf roller[J]. Hunan Agricultural Sciences, 2013(20): 25-27.
[17]QI H H, ZHANG Y H, WANG J, et al. Rhythm of rice leaf folder (Cnaphalocrocis medinalis) to the searchlight trap[J]. Scientia Agricultura Sinica, 2014, 47(22): 4436-4444.
[18]李波,刘占宇,黄敬峰,等. 基于PCA和PNN的水稻病虫害高光谱识别[J]. 农业工程学报, 2009, 25(9): 143-147.
[19]LIANG G C, OUYANG Y C, DAI S M. Detection and classification of rice infestation with rice leaf folder (Cnaphalocrocis medinalis) using hyperspectral imaging techniques[J]. Remote Sensing, 2021, 13(22): 4587.
[20]HUANG J R, SUN Q H, LIU X D. Spectral characteristics of rice leaves damaged by rice leaf roller[J]. Scientia Agricultura Sinica, 2010, 43(13): 2679-2687.
[21]孙启花,刘向东. 稻纵卷叶螟危害孕穗期水稻的光谱诊断[J]. 中国农业科学, 2012, 45(24): 5040-5048.
[22]FENG W, WANG X Y, SONG X, et al. Hyperspectral estimation of canopy chlorophyll density in winter wheat under stress of powdery mildew[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 114-123.
[23]KIARA B, ALISTAIR C, MBULISI S, et al. Predicting the chlorophyll content of maize over phenotyping as a proxy for crop health in smallholder farming systems[J]. Remote Sensing, 2022, 14(3): 518.
[24]KAUR R, SINGH M, KINGRA P K. Hyperspectral remote sensing for monitoring growth of rice (Oryza sativa) crop[J]. Indian Journal of Agronomy, 2016, 61(2): 191-196.
[25]PARTHASARATHY V, SANTHOSH R, KUMAR M R, et al. Unmanned aerial vehicles (UAV) in precision agriculture: applications and challenges[J]. Energies, 2021, 15(1): 217.
[26]ZHANG J C, PU R L, HUANG W J, et al. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses[J]. Field Crops Research, 2012, 134(3): 165-174.
[27]CHEW W C, HASHIM M, LAU A M S, et al. Early detection of plant disease using close range sensing system for input into digital earth environment[J]. IOP Conference Series: Earth and Environmental Science, 2014, 18(1): 12143.
[28]GOGOI N K, DEKA B, BORA L C. Remote sensing and its use in detection and monitoring plant diseases: a review[J]. Agricultural Reviews, 2018, 39(4): 307-313.
[29]THOMAS F, HAI P, ALESSANDRO G, et al. Active and passive electro-optical sensors for health assessment in food crops[J]. Sensors (Basel, Switzerland), 2020, 21(1): 171.
[30]苏宝峰,刘昱麟,黄彦川,等. 群体小麦条锈病发病动态无人机遥感监测方法[J]. 农业工程学报, 2021, 37(23): 127-135.
[31]赵晓阳,张建,张东彦,等. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究[J]. 光谱学与光谱分析, 2019, 39(4): 1192-1198.
[32]LIU T, SHI T Z, ZHANG H, et al. Detection of rise damage by leaf folder (Cnaphalocrocis medinalis) using unmanned aerial vehicle based hyperspectral data[J]. Sustainability, 2020, 12(22): 9343.
[33]包云轩,曹云,谢晓金,等. 中国稻纵卷叶螟发生特点及北迁的大气背景[J]. 生态学报, 2015, 35(11): 3519-3533.
[34]董红刚,耿跃,左希,等. 扬州邗江地区稻纵卷叶螟发生动态及影响因素分析[J]. 环境昆虫学报, 2021, 43(4): 850-857.
[35]DASH J, CURRAN P J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI)[J]. Advances in Space Research, 2006, 39(1): 100-104.
[36]FITZGERALD G J, RODRIGUEZ D, CHRISTENSEN L K, et al. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments[J]. Precision Agriculture, 2006, 7(4): 233-248.
[37]关丽,刘湘南. 两种用于作物冠层叶绿素含量提取的改进光谱指数[J]. 地球科学进展, 2009, 24(5): 548-554.
[38]LUCAS P O, PAULA M R A, DANILO R P, et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery[J]. Remote Sensing, 2019, 11(24): 2925.
[39]CANH N, VASIT S, MATTHEW M, et al. Early detection of plant viral disease using hyperspectral imaging and deep learning[J]. Sensors, 2021, 21(3): 742.
[40]DE MYTTENAERE A, BORIS G, LE GRAND B, et al. Mean absolute percentage error for regression models[J]. Neurocomputing, 2016, 192(5): 38-48.
[41]李文涛,杨江波,张绩,等. 基于不同传感器的纽荷尔脐橙叶片叶绿素含量检测技术评价[J]. 中国农业科学, 2018, 51(6): 1057-1066.
[42]YAO Z F, LEI Y, HE D J. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging[J]. Sensors (Basel, Switzerland), 2019, 19(4): 952.
[43]REI S, YUDAI S, RYOHEI K, et al. Hyperspectral wavelength selection for estimating chlorophyll content of muskmelon leaves[J]. European Journal of Remote Sensing, 2021, 54(1): 512-523.
[44]周晓,包云轩,王琳,等. 稻纵卷叶螟为害水稻的冠层光谱特征及叶绿素含量估算[J]. 中国农业气象, 2020, 41(3): 173-186.
[45]KUMAR P, SINGH R, PANDEY S K. Population dynamics of rice leaf folder, Cnaphalocrocis medinalis Guen., in relation to stage of the crop, weather factors and predatory spiders[J]. Journal of Entomological Research, 1996, 20(3): 205-210.
[46]KAWAMURA K, IKEURA H, PHONGCHANMAIXAY S, et al. Canopy hyperspectral sensing of paddy fields at the booting stage and PLS regression can assess grain yield[J]. Remote Sensing, 2018, 10(8): 1249.
[47]MOTOHKA T, NASAHARA K N, OGUMA H, et al. Applicability of green-red vegetation index for remote sensing of vegetation phenology[J]. Remote Sensing, 2010, 2(10): 2369-2387.
[48]ALBETIS J, JACQUIN A, GOULARD M, et al. On the potentiality of UAV multispectral imagery to detect flavescence dorée and grapevine trunk diseases[J]. Remote Sensing, 2018, 11(1): 23.
[49]GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298.
[50]DONG T F, MENG J H, SHANG J L, et al. Modified vegetation indices for estimating crop fraction of absorbed photosynthetically active radiation[J]. International Journal of Remote Sensing, 2015, 36(12): 3097-3113.
[51]VYGODSKAYA N N, GORSHKOVA I I, FADEYEVA Y V. Theoretical estimates of sensitivity in some vegetation indices to variation in the canopy condition[J]. International Journal of Remote Sensing, 1989, 10(12): 1857-1872.
[52]PETTORELLI N, VIK J O, MYSTERUD A, et al. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 2005, 20(9): 503-510.
[53]RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.
[54]KIMURA R, OKADA S, MIURA H, et al. Relationships among the leaf area index, moisture availability, and spectral reflectance in an upland rice field[J]. Agricultural Water Management, 2004, 69(2): 83-100.
[55]GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.
[56]陈彦,朱奇,刘树真. 植物对虫害的超越补偿作用[J]. 生物学通报, 2000(5): 19-21.
[57]HASHIMOTO N, SAITO Y, MAKI M, et al. Simulation of reflectance and vegetation indices for unmanned aerial vehicle (UAV) monitoring of paddy fields[J]. Remote Sensing, 2019, 11(18): 2119.
[58]SINGH N Y, KUMAR G S, CHANDRAMANI S, et al. A study on light trap catches of rice leaf folder, (Cnaphalocrocis medinalis) Guenée in relation to meteorological parameters[J]. Trends in Biosciences, 2016, 8(9): 2251-2255.
[59]XAVIER T W F, SOUTO R N V, STATELLA T, et al. Identification of ramularia leaf blight cotton disease infection levels by multispectral, multiscale UAV imagery[J]. Drones, 2019, 3(2): 33.
[60]MA H Q, HUANG W J, DONG Y Y, et al. Using UAV-based hyperspectral imagery to detect winter wheat fusarium head blight[J]. Remote Sensing, 2021, 13(15): 3024.
[61]SINGH R, SINGH L S, PRASAD D, et al. Relationship of susceptibility and growth stages of plant for development of epidemic of sheath blight in rice[J]. Journal of Applied and Natural Science, 2010, 2(2): 230-233.
[62]FENG Z H, SONG L, ZHANG S H, et al. Wheat powdery mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[63]ZHANG G S, XU T Y, TIAN Y W, et al. Assessment of rice leaf blast severity using hyperspectral imaging during late vegetative growth[J]. Australasian Plant Pathology: Journal of the Australasian Plant Pathology Society, 2020, 49(5): 571-578.
[64]LIU H, HAN Y Q, ZHONG Y Q, et al. Preference and performance of the rice leaf folder, Cnaphalocrocis medinalis, in relation to rice developmental stage[J]. Entomologia Experimentalis et Applicata, 2021, 169(8): 701-710.
[65]ZHU W X, SUN Z G, YANG T, et al. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales[J]. Computers and Electronics in Agriculture, 2020, 178: 105786.
[66]QIAO K, ZHU W Q, XIE Z Y. Application conditions and impact factors for various vegetation indices in constructing the LAI seasonal trajectory over different vegetation types[J]. Ecological Indicators, 2020, 112(C): 106153.
[67]VIA A, GITELSON A A, NGUY-ROBERTSON A L, et al. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops[J]. Remote Sensing of Environment, 2011, 115(12): 3468-3478.
[68]STIEHA C R, ABBOTT K C, POVEDA K. The effects of plant compensatory regrowth and induced resistance on herbivore population dynamics.[J]. The American Naturalist, 2016, 187(2): 167-181.
[69]赵威,王征宏. 植物的补偿性生长[J]. 生物学通报, 2008(3): 12-13.
[70]黄建荣,孙启花,刘向东. 稻纵卷叶螟危害后水稻叶片的光谱特征[J]. 中国农业科学, 2010, 43(13): 2679-2687.
[71]孙红,李民赞,周志艳,等. 基于光谱技术的水稻稻纵卷叶螟受害区域检测[J]. 光谱学与光谱分析, 2010, 30(4): 1080-1083.
[72]HUANG J R, LIAO H J, ZHU Y B, et al. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis)[J]. Computers and Electronics in Agriculture, 2012, 82: 100-107.
[73]SINGH B, SINGH M, SURI K, et al. Use of hyper-spectral data for detection of rice leaf folder infestation[J]. Journal of Research, 2013, 50(3/4): 147-150.
[74]高文婷,陈心怡,包云轩,等. 奇异交叉谱分析方法在中国南方稻纵卷叶螟发生预测中的应用[J]. 中国农业气象, 2017, 38(9): 583-596.
[75]宋勇,陈兵,王琼,等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306.
[76]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(4):976-984.
[77]彭晓伟,张爱军,杨晓楠.基于WOS的高光谱技术在农业方面应用的计量分析[J].江苏农业学报,2022,38(1):239-249.
[78]金宇豪,石楠,文双雅,等.菜油兼用型油菜籽粒油酸含量的高光谱模型构建[J].南方农业学报,2021,52(6):1674-1682.
[79]刘忠,万炜,黄晋宇,等. 基于无人机遥感的农作物长势关键参数反演研究进展[J]. 农业工程学报, 2018, 34(24): 60-71.
[80]刘涛,张寰,王志业,等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报, 2021, 37(19): 65-72.

相似文献/References:

[1]王琳,包云轩,谢晓金,等.基于地统计法的稻纵卷叶螟时空变化特征[J].江苏农业学报,2017,(01):50.[doi:10.3969/j.issn.1000-4440.2017.01.008 ]
 WANG Lin,BAO Yun-xuan,XIE Xiao-jin,et al.Spatiotemporal characteristics of rice leaf rollers (Cnaphalocrocis medinalis) based on geostatistics method[J].,2017,(07):50.[doi:10.3969/j.issn.1000-4440.2017.01.008 ]
[2]徐健,李传明,韩光杰,等.颗粒体病毒(CnmeGV)对稻纵卷叶螟的感染及害虫种群增长的影响[J].江苏农业学报,2018,(01):29.[doi:doi:10.3969/j.issn.1000-4440.2018.01.004]
 XU Jian,LI Chuan-ming,HAN Guang-jie,et al.The effect of Cnaphalocrocis medinalis granulovirus (CnmeGV) on larva infection and population regulation of rice leaffolder[J].,2018,(07):29.[doi:doi:10.3969/j.issn.1000-4440.2018.01.004]
[3]宋恩泽,张颖,邵光成,等.基于无人机多光谱遥感的农业园区地物分类研究[J].江苏农业学报,2023,(09):1862.[doi:doi:10.3969/j.issn.1000-4440.2023.09.008]
 SONG En-ze,ZHANG Ying,SHAO Guang-cheng,et al.Classification of geological features in agricultural parks based on multispectral remote sensing by unmanned aerial vehicle[J].,2023,(07):1862.[doi:doi:10.3969/j.issn.1000-4440.2023.09.008]

备注/Memo

备注/Memo:
收稿日期:2022-10-31基金项目:国家自然科学基金面上项目(41975144);江苏省重点研发项目(BE2019387)作者简介:郭铭淇(1997-),女,广东佛山人,硕士,主要研究领域为农业气象灾害监测与预警。(E-mail)guomqii@sina.com通讯作者:包云轩,(E-mail)baoyx@nuist.edu.cn;baoyunxuan@163.com
更新日期/Last Update: 2023-11-17