参考文献/References:
[1]郭云峰,王凤行,陈子学,等.天津小站稻发展现状与振兴策略[J].作物研究,2021,35(5):431-435.
[2]王人潮,黄敬峰. 水稻遥感估产[M]. 北京:中国农业出版社,2002.
[3]XIAO X,BOLES S,LIU J,et al.Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J].Remote Sensing of Environment,2005,95(4):480-492.
[4]刘佳,王利民,姚保民,等. 基于多时相OLI数据的宁夏大尺度水稻面积遥感估算[J]. 农业工程学报,2017,33(15):200-209.
[5]杨沈斌,景元书,王琳,等.基于MODIS时序时间提取河南省水稻种植分布[J].大气科学学报,2012,35(1):113-120.
[6]李根,景元书,王琳,等. 基于MODIS时序植被指数和线性光谱混合模型的水稻面积提取[J]. 大气科学学报, 2014, 37(1):119-126.
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,32(5):1066-1072.
[8]CAO J J,CAI X L,TAN J W,et al.Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system,Southern China,from 1988-2017[J].International Journal of Remote Sensing,2021,42(4):1556-1576.
[9]曹丹,白林燕,冯建中,等.东北三省水稻种植面积时空变化监测与分析[J].江苏农业科学,2018,46(10):260-265.
[10]王松寒,何隆华.雷达遥感技术在水稻识别中的研究进展[J].遥感信息,2015,30(2):3-9.
[11]张征云,江文渊,张彦敏,等.基于哨兵SAR数据和多光谱数据的水稻识别研究[J].生态与农村环境学报,2023,39(4):556-564.
[12]SHAO Y, FAN X, LIU H, et al. Rice monitoring and production estimation using multitemporal RADARSAT[J].Remote Sensing of Environment, 2001, 76(3): 310-325.
[13]申双和,杨沈斌,李秉柏,等. 基于ENVISAT ASAR数据的水稻估产方案[J]. 中国科学(D辑:地球科学),2009,39(6):763-773.
[14]杨沈斌,李秉柏,申双和,等. 基于多时相多极化差值图的稻田识别研究[J]. 遥感学报,2008,13(3):138-144.
[15]CLAUSS K, OTTINGER M, LEINENKUGEL P, et al. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018,73:574-585.
[16]黄翀,许照鑫,张晨晨,等. 基于Sentinel-1数据时序特征的热带地区水稻种植结构提取方法[J]. 农业工程学报, 2020, 36(9):177-184.
[17]桑国庆,唐志光,毛克彪,等. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9):2409-2420.
[18]夏俊,苏涛,刘丽娜,等. 基于多时相Sentinel-1A数据的水稻面积提取[J].江苏农业学报, 2022,38(3):666-674.
[19]查东平,蔡海生,张学玲,等. 基于多时相Sentinel-1水稻种植范围提取[J].自然资源遥感, 2022,34(3):184-195.
[20]杜伟娜,徐爱功,宋耀鑫,等.新型SAR传感器一级地距产品绝对辐射定标方法[J].国土资源遥感,2016,28(4):30-34.
[21]刘海娟,张婷,侍昊,等. 基于RF模型的高分辨率遥感影像分类评价[J].南京林业大学学报(自然科学版),2015,39(1):99-103.
[22]WATTS J D, POWELL S L, LAWRENCE R L, et al. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery[J]. Remote Sensing of Environment, 2011, 115(1):66-75.
[23]BREIMAN L, LAST M, RICE J. Random forests: Finding quasars//[M]. FEIGELSON E D, BABU G J. Statistical Challenges in Astronomy. New York: Springer, 2003:243-254.
[24]周正龙,沙晋明,范跃新,等. 基于随机森林的遥感土地利用分类及景观格局分析[J].计算机系统应用,2020,29(2):40-48.
相似文献/References:
[1]牛芳鹏,李新国,麦麦提吐尔逊·艾则孜,等.基于光谱指数的博斯腾湖西岸湖滨绿洲土壤有机碳含量估算模型[J].江苏农业学报,2022,38(02):414.[doi:doi:10.3969/j.issn.1000-4440.2022.02.015]
NIU Fang-peng,LI Xin-guo,MAMATTURSUN·Eziz,et al.Estimation model of soil organic carbon content in lakeside oasis on the west coast of Bosten Lake based on spectral index[J].,2022,38(05):414.[doi:doi:10.3969/j.issn.1000-4440.2022.02.015]
[2]李长春,翟伟广,王春阳,等.基于Sentinel-1A影像的原阳县玉米和水稻分类时间窗选择[J].江苏农业学报,2023,(02):413.[doi:doi:10.3969/j.issn.1000-4440.2023.02.014]
LI Chang-chun,ZHAI Wei-guang,WANG Chun-yang,et al.Time window selection of corn and rice classification in Yuanyang County based on Sentinel-1A image[J].,2023,(05):413.[doi:doi:10.3969/j.issn.1000-4440.2023.02.014]
[3]樊泳灼,李新国.湖滨绿洲棕漠土有机碳含量高光谱估算[J].江苏农业学报,2023,(06):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
FAN Yong-zhuo,LI Xin-guo.Hyperspectral prediction of organic carbon content of brown desert soil in the lakeside oasis[J].,2023,(05):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
[4]钟怡琪,李家国,韩杰,等.基于哨兵影像与多特征优选的溧阳市上兴镇水稻识别[J].江苏农业学报,2023,(08):1688.[doi:doi:10.3969/j.issn.1000-4440.2023.08.008]
ZHONG Yi-qi,LI Jia-guo,HAN Jie,et al.Identification of rice in Shangxing Town, Liyang City based on Sentinel image and multi-feature optimization[J].,2023,(05):1688.[doi:doi:10.3969/j.issn.1000-4440.2023.08.008]
[5]于天祥,樊红.基于Sentinel-2多时相遥感影像的冬小麦种植面积监测[J].江苏农业学报,2024,(09):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]
YU Tianxiang,FAN Hong.Remote sensing monitoring of winter wheat planting area based on multi-temporal Sentinel-2 imagery[J].,2024,(05):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]
[6]罗凤宇,高艺非,谢勇,等.基于随机森林算法与多时相Sentinel-2影像数据的茶树种植区信息提取[J].江苏农业学报,2024,(09):1671.[doi:doi:10.3969/j.issn.1000-4440.2024.09.011]
LUO Fengyu,GAO Yifei,XIE Yong,et al.Extraction of tea plantation area information based on random forest algorithm and multi-temporal Sentinel-2 image data[J].,2024,(05):1671.[doi:doi:10.3969/j.issn.1000-4440.2024.09.011]