参考文献/References:
[1]李娅,余红红. 基于全产业链视角的云南省核桃产业国内竞争力分析[J].林业经济问题,2018,38(5):38-43,104.
[2]宁德鲁,王卫斌,贺熙勇,等. 云南坚果产业发展状况及SWOT分析[J].西部林业科学,2019,48(2):8-13.
[3]刘星星,王烁烁,徐丽明,等. 基于OpenCV的动态葡萄干色泽实时识别[J].农业工程学报,2019,35(23):177-184.
[4]李颀,王康,强华,等. 基于颜色和纹理特征的异常玉米种穗分类识别方法[J].江苏农业学报,2020,36(1):24-31.
[5]甘雨,郭庆文,王春桃,等. 基于改进EfficientNet模型的作物害虫识别[J].农业工程学报,2022,38(1):203-211.
[6]KOKLU M , CINAR I, TASPINAR Y S . Classification of rice varieties with deep learning methods[J]. Computers and Electronics in Agriculture, 2021, 187: 106285.
[7]SUBEESH A, BHOLE S, SINGH K, et al. Deep convolutional neural network models for weed detection in polyhouse grown bell peppers[J]. Artificial Intelligence in Agriculture, 2022, 6:47-54.
[8]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J].江苏农业学报,2022,38(1):129-134.
[9]李文宝,曹成茂,张金炎,等. 基于深度学习的山核桃破壳物料分类识别[J].食品与机械,2021,37(9):133-138,185.
[10]赵腾飞,胡国玉,周建平,等. 卷积神经网络算法在核桃仁分类中的研究[J].中国农机化学报,2022,43(6):181-189.
[11]李好,邱卫根,张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J].计算机工程与应用,2022,58(12):260-268.
[12]张旭,周云成,刘忠颖,等. 基于改进ShuffleNet V2模型的苹果叶部病害识别及应用[J].沈阳农业大学学报,2022,53(1):110-118.
[13]蔡建,周军,史建新,等. 基于机器视觉的核桃仁分级方法[J].江苏农业科学,2018,46(5):158-161.
[14]SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2: Inverted residuals and linear bottlenecks[C].Salt Lake City:IEEE,2018: 4510-4520.
[15]ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City:CVF,2018:6848-6856.
[16]MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient cnn architecture design[C].Munich:LNCS,2018: 116-131.
[17]LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]. New Orleans:CVF,2022: 11976-11986.
[18]TAN M, LE Q V. EfficientNet V2: Smaller models and faster training[C]. Graz, Austria:PMLR, 2021: 10096-10106.
[19]HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenet V3[C].Long Beach:CVF, 2019: 1314-1324.
[20]GAO H, YU S, ZHUANG L, et al. Deep networks with stochastic depth[C]. Amsterdam:LNCS, 2016: 646-661.
[21]KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[22]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE,2016: 770-778.
[23]SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.