[1]陈元军,马娟娟,史睿,等.整合关联分析和共表达网络分析挖掘甘蓝型油菜籽粒质量候选基因[J].江苏农业学报,2023,(04):913-930.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]
 CHEN Yuan-jun,MA Juan-juan,SHI Rui,et al.Integrating genome-wide association study and weighted gene co-expression network analysis to explore candidate genes of seed weight in rapeseed (Brassica napus L.)[J].,2023,(04):913-930.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]
点击复制

整合关联分析和共表达网络分析挖掘甘蓝型油菜籽粒质量候选基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
913-930
栏目:
遗传育种·生理生化
出版日期:
2023-08-30

文章信息/Info

Title:
Integrating genome-wide association study and weighted gene co-expression network analysis to explore candidate genes of seed weight in rapeseed (Brassica napus L.)
作者:
陈元军12马娟娟23史睿23李伟龙12王婷24彭琦2张维2陈锋2
(1.福建农林大学农学院,福建福州350002;2.江苏省农业科学院经济作物研究所/农业农村部长江下游棉花与油菜重点实验室/江苏省农业生物学重点实验室/江苏省现代作物生产协同创新中心,江苏南京210014;3.南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095;4.江苏大学生命科学研究院,江苏镇江212023)
Author(s):
CHEN Yuan-jun12MA Juan-juan23SHI Rui23LI Wei-long12WANG Ting24PENG Qi2ZHANG Wei2CHEN Feng2
(1.College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;2.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China;3.Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China;4.School of Life Sciences, Jiangsu University, Zhenjiang 212023, China)
关键词:
甘蓝型油菜籽粒质量产量全基因组关联分析共表达网络分析
Keywords:
Brassica napus L.seed weightyieldgenome-wide association study (GWAS)weighted gene co-expression network analysis (WGCNA)
分类号:
S634.3
DOI:
doi:10.3969/j.issn.1000-4440.2023.04.001
文献标志码:
A
摘要:
甘蓝型油菜是中国重要的油料作物,籽粒质量是油菜产量构成的重要因素。本研究利用A-D Test模型对496份油菜的籽粒质量进行全基因组关联分析,共检测到19个显著位点,联合解释341%的表型变异。整合A-D Test及前期混合线性模型和一般线性模型结果后得到71个位点,联合解释50.1%的表型变异。在22个位点置信区间内找到ARF2、NPC6、TTG2和WRI1等已被报道的拟南芥中的籽粒质量基因的同源基因。同时,利用大粒品种中双11和中小粒品种中油821的籽粒和角果皮转录组数据进行加权基因共表达网络分析,构建了13个共表达模块,其中紫色(purple)和洋红色(magenta)模块与籽粒质量表型显著相关。GO富集分析结果表明,2个模块在L-苯丙氨酸氨基转移酶活性、硫双加氧酶活性、焦磷酸酶活性和RNA解旋酶活性等显著富集。2个模块中的枢纽基因BnaA06g00850D、BnaA01g00990D、BnaC06g10000D和BnaC02g44260D等的同源基因为ETHE1、DAR1、GLN1;1和SMG7等拟南芥籽粒质量已知基因。整合全基因组关联分析和加权基因共表达网络分析的分析结果,在42个显著位点的置信区间内找到90个属于purple和magenta模块的基因,其中BnaA01g06210D、BnaA07g14990D和BnaA07g03030D等拟南芥同源基因已被报道参与种子发育进程调控。本研究整合GWAS与WGCNA 2种分析方法,挖掘甘蓝型油菜的籽粒质量候选基因,为研究籽粒质量的调控机制、指导籽粒质量的遗传改良提供参考。
Abstract:
Brassica napus L. is one of the most important oil crops in China, and seed weight is one of the essential components of seed yield. In this study, we performed a genome-wide association study (GWAS) of seed weight in a collection of 496 rapeseed materials, and detected 19 significant loci via A-D Test model, which accounted for 341% of the phenotypic variance on the whole. Combining the common loci of A-D Test an d previous mixed linear model (MLM) and general linear model (GLM), 71 loci were obtained and accounted for 501% of the phenotypic variance. Genes named ARF2, NPC6, TTG2 and WRI1 were found to be orthologous with reported Arabidopsis seed weight genes in confidence interval of 22 loci. Meanwhile, a total of 13 co-expression modules were constructed through weighted gene co-expression network analysis (WGCNA) based on transcriptome data of seed and silique husk from big seed variety Zhongshuang11 and middle-small seed variety Zhongyou821. The purple and magenta modules were significantly correlated with the seed weight phenotype. Results of GO enrichment analysis showed that, the above two modules were enriched significantly at terms like L-phenylalanine aminotransferase activity, sulfur dioxygenase activity, pyrophosphatase activity and RNA helicase activity, etc. Hub genes from the purple and magenta modules like BnaA06g00850D, BnaA01g00990D, BnaC06g10000D and BnaC02g44260D were orthologous with the reported genes of seed weight in Arabidopsis, such as ETHE1, DAR1, GLN1;1 and SMG7. By combing the results of GWAS and WGCNA, we identified 90 genes of purple module or magenta module in the confidence intervals of 42 significant loci, and the orthologous genes in Arabidopsis like BnaA01g06210D, BnaA07g14990D and BnaA07g03030D were reported to participate in seed development regulation. In this study, we integrated the analytical methods of GWAS and WGCNA to identify the candidate genes of seed weight in rapeseed, so as to lay a foundation for studying the regulation mechanism and guiding the genetic improvement of seed weight.

参考文献/References:

[1]何微,李俊,王晓梅,等. 全球油菜供需现状与我国油菜产业问题、对策[J]. 中国油脂, 2022,47(2):1-7.
[2]王健胜,韦世豪,田建华,等. 近年来中国冬油菜主要农艺性状的演变分析[J]. 西北农业学报, 2012, 21(11): 75-82.
[3]祝利霞,张冬晓,傅廷栋,等. 20年来中国冬油菜新品种产量和抗病性状分析[J]. 中国农学通报, 2010, 26(24): 375-380.
[4]王浩. 甘蓝型油菜千籽粒质量的遗传分析和主效QTL cqSW.A03-2的精细定位[D]. 武汉:华中农业大学, 2020.
[5]GALLARDO K, THOMPSON R, BURSTIN J. Reserve accumulation in legume seeds[J]. C R Biol, 2008, 331(10): 755-762.
[6]SUN X, SHANTHARAJ D, KANG X,et al. Transcriptional and hormonal signaling control of Arabidopsis seed development[J]. Curr Opin Plant Biol, 2010, 13(5): 611-620.
[7]GREGORIO O, DARIO P, IGNACIO E,et al. Networks controlling seed size in Arabidopsis[J]. Plant Reprod, 2015, 28(1): 17-32.
[8]WENG J F, GU S H, WAN X Y ,et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1199-1209.
[9]CHEN W, ZHAO K Q, ZHANG G J,et al. Extra-large seed germplasms of Brassica napus created through microspore culture[J]. J Environ Eng Sci, 2016, 5(2): 90-96.
[10]王瑞,李加纳,唐章林,等. 甘蓝型黄籽油菜产量性状的遗传分析[J]. 中国农学通报, 2004, 20(5): 37-38.
[11]崔嘉成,刘佳,梅德圣,等. 甘蓝型油菜裂角相关性状的遗传与相关分析[J]. 作物学报, 2013, 39(10): 1791-1798.
[12]戚存扣,盖钧镒,傅寿仲,等. 甘蓝型油菜 (Brassica napus L.)千籽粒重性状遗传体系分析[J]. 作物学报, 2004, 30(12): 1274-1277.
[13]李娜. 甘蓝型油菜籽粒重母体调控机理解析[D]. 北京:中国农业科学院, 2015.
[14]杨小红,严建兵,郑艳萍,等. 植物数量性状关联分析研究进展[J]. 作物学报, 2007, 33(4): 523-530.
[15]LU K, PENG L,LU J H,et al. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus[J]. Front Plant Sci, 2017, 15(8): 206-221.
[16]DONG H L, TAN C D, LI Y Z,et al. Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus L.[J]. Front Plant Sci, 2018, 18(9): 921.
[17]KHAN S U, YANGMIAO J, LIU S,et al. Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L.[J]. Ind Crops Prod, 2019, 15(142): 111877.
[18]林升丽. 全基因组和全转录组关联分析解析油菜千籽粒重自然变异的遗传机制[D]. 武汉:华中农业大学, 2020.
[19]MA J, WEI L J, LIN A,et al. The alternative splicing landscape of Brassica napus infected with Leptosphaeria maculans[J]. Genes, 2019, 10(4): 296-311.
[20]鲜小华,王嘉,徐新福,等. 整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点[J]. 作物学报, 2018, 44(8): 1105-1113.
[21]刘景森. 整合GWAS和WGCNA筛选甘蓝型油菜生物产量候选基因[D]. 重庆:西南大学, 2020.
[22]田贵福,刘依林,唐欢,等. 利用共表达分析挖掘控制籽粒重的候选基因及SWH1对种子籽粒重的初步验证[C].南京:中国植物学会,2022.
[23]张春,赵小珍,庞承珂,等. 甘蓝型油菜千籽粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[24]PRUIM R J, WELCH R P, SANNA S,et al. LocusZoom: regional visualization of genome-wide association scan results[J]. Bioinformatics, 2010, 26(18): 2336-2337.
[25]PETER L, STEVE H. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9(1): 1-13.
[26]REED W J. A stochastic model for the spread of a sexually transmitted disease which results in a scale-free network[J]. Math Biosci, 2006, 201(1/2): 3-14.
[27]PAUL S, ANDREW M, OWEN O,et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome, 2003, 13(11): 2498-2504.
[28]SUN C M, WANG B Q, YAN L,et al. Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.)[J]. Front Plant Sci, 2016, 7: 1102-1115.
[29]PERKOWSKI M C, WARPEHA K M. Phenylalanine roles in the seed-to-seedling stage: not just an amino acid[J]. Plant Sci, 2019, 289: 110223.
[30]ZHOU Y,CAI H M,XIAO J H,et al. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds[J].Theor Appl Genet ,2009,118(7):1381-1390.
[31]HOLDORF M M, OWEN H A, LIEBER S R,et al. Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development[J]. Plant Physiol, 2012, 160(1): 226-236.
[32]BALERONI C R S, FERRARESE M L L, SOUZA N E,et al. Lipid accumulation during canola seed germination in response to cinnamic acid derivatives[J]. Biol Plantarum, 2000, 43(2): 313-316.
[33]MASATO Y, TERUMI N, KENZO N. Arabidopsis UPF1 RNA helicase for nonsense-mediated mRNA decay is involved in seed size control and is essential for growth[J]. Plant Cell Physiol, 2006, 47(5): 572-580.
[34]MEYER K, STECCA K L, EWELL HICKS K,et al. Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis[J]. Plant Physiol, 2012, 159(3): 1221-1234.
[35]石柳柳. 甘蓝型油菜角果长和籽粒重主效QTL qSLWA9的克隆与功能分析[D]. 武汉:华中农业大学, 2019.
[36]孙程明,陈松,彭琦,等. 甘蓝型油菜角果长度性状的全基因组关联分析[J]. 作物学报, 2019, 45(9):1303-1310.
[37]彭柳. 不同生境下影响甘蓝型油菜收获指数的相关产量性状基因定位[D]. 重庆:西南大学, 2016.
[38]MARIE C S, MELISSA S, SUSHMA T, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J]. Development, 2006, 133(2): 251-261.
[39]GUANGQIN C, CHUCHUAN F, SHENG L,et al. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants[J]. New Phytol, 2020, 226(4): 1055-1073.
[40]JOHNSON C S, KOLEVSKI B, SMYTH D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell, 2002, 14(6): 1359-1375.
[41]AN D, SUH M C. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa[J]. Plant Biotechnol Rep, 2015, 9(3): 137-148.
[42]LI N, LI Y. Signaling pathways of seed size control in plants[J]. Curr Opin Plant Biol, 2016, 33: 23-32.
[43]GUAN M, MLLER I S, SCHJOERRING J K. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis[J]. J Exp Bot, 2015, 66(1): 203-212.
[44]NINA R, SVETLANA A, JASNA P,et al. Arabidopsis SMG7 protein is required for exit from meiosis[J]. J Cell Sci, 2008, 121(13): 2208-2216.
[45]SHIPENG L, LEI C, LIWU Z,et al. BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes[J]. Plant Physiol, 2015, 169(4): 2744-2760.
[46] WANG J L, TANG M Q, CHEN S,et al. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus[J]. Plant Biotechnol J, 2017, 15(8): 1024-1033.
[47]PORTEREIKO M F, SANDAKLIE-NIKOLOVA L, LLOYD A,et al. NUCLEAR FUSION DEFECTIVE1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilization[J]. Plant Physiol, 2006, 141(3): 957-965.
[48]MEINKE D W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis[J]. New Phytol, 2020, 226(2): 306-325.
[49]HUANG J B, LIU H, CHEN M,et al. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis[J]. Plant Cell, 2014, 26(9): 3501-3518.
[50]AKER J, BORST J W, KARLOVA R,et al. The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane[J]. J Struct Biol, 2006, 156(1): 62-71.
[51]NING Y, YANLI L, XIAOHONG Y,et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel[J]. PLos Genet, 2014, 10(9): e1004573.
[52]FARBER C R. Systems-level analysis of genome-wide association data[J]. G3-Genes Genom Genet, 2013, 3(1): 119-129.
[53]王艳花,刘景森,李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.

相似文献/References:

[1]王杰利,陈盛,付正莉,等.营养分配调节对甘蓝型油菜种子大小的影响及其机制[J].江苏农业学报,2016,(04):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
 WANG Jie-li,CHEN Sheng,FU Zheng-li,et al.Seed size of lateral branchesremoved Brassica napus and its cytological mechanism[J].,2016,(04):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
[2]何俊平,朱家成,王建平,等.甘蓝型油菜幼苗显微组织结构与抗寒性的关系[J].江苏农业学报,2017,(01):19.[doi:10.3969/j.issn.1000-4440.2017.01.004 ]
 HE Jun-ping,ZHU Jia-cheng,WANG Jian-ping,et al.The relationship between seedling microtructure and cold resistance of Brassica napus[J].,2017,(04):19.[doi:10.3969/j.issn.1000-4440.2017.01.004 ]
[3]王健胜,侯桂玲,李少钦,等.甘蓝型油菜育种亲本产量及品质性状遗传效应分析[J].江苏农业学报,2015,(03):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
 WANG Jian-sheng,HOU Gui-ling,LI Shao-qin,et al.Genetic effects of yield traits and quality traits for breeding parents of Brassica napus L.[J].,2015,(04):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
[4]王建,张善磊,赵春芳,等.水稻粒型基因GW2和GS3遗传效应分析[J].江苏农业学报,2017,(04):721.[doi:doi:10.3969/j.issn.1000-4440.2017.04.001]
 WANG Jian,ZHANG Shan-lei,ZHAO Chun-fang,et al.Analysis of genetic effects of GW2 and GS3 genes in rice[J].,2017,(04):721.[doi:doi:10.3969/j.issn.1000-4440.2017.04.001]
[5]陈盛,王宁宁,王玉康,等.一种快速高效筛选甘蓝型油菜转化植株的方法[J].江苏农业学报,2017,(05):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
 CHEN Sheng,WANG Ning-ning,WANG Yu-kang,et al.A rapid and efficient approach to screening transformed plants of Brassica napus[J].,2017,(04):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
[6]高建芹,浦惠明,龙卫华,等.甘蓝型油菜籽粒产量和品质性状对氮肥用量的响应[J].江苏农业学报,2019,(03):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
 GAO Jian-qin,PU Hui-ming,LONG Wei-hua,et al.Effects of nitrogen application rate on seed yield and its quality parameters of Brassica napus L.[J].,2019,(04):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
[7]熊丹,周霆,田方艳,等.甘蓝型油菜脂肪酸脱氢酶2兔源多克隆抗体的制备与应用[J].江苏农业学报,2020,(04):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
 XIONG Dan,ZHOU Ting,TIAN Fang-yan,et al.Preparation and application of rabbit-derived polyclonal antibody against fatty acid desaturase 2 in Brassica napus[J].,2020,(04):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
[8]万军斌,王旺田,孙万仓,等.甘蓝型油菜BnWSD家族基因鉴定及其在干旱胁迫下的表达特征[J].江苏农业学报,2024,(07):1170.[doi:doi:10.3969/j.issn.1000-4440.2024.07.003]
 WAN Junbin,WANG Wangtian,SUN Wancang,et al.Identification of BnWSD family genes in Brassica napus L. and their expression characteristics under drought stress[J].,2024,(04):1170.[doi:doi:10.3969/j.issn.1000-4440.2024.07.003]

备注/Memo

备注/Memo:
收稿日期:2022-08-27 基金项目:国家自然科学基金项目(32001581);江苏省基础研究计划(自然科学基金)项目(BK20190260);江苏省区域现代农业与环境保护协同创新中心专项(HSXT3015);江苏省种业振兴揭榜挂帅项目[JBGS(2021)061] 作者简介:陈元军(1996-),男,海南万宁人,硕士研究生,主要从事油菜遗传育种研究。(E-mail)953825642@qq.com 通讯作者:孙程明, (E-mail)suncm8331537@gmail.com; 季彪俊, (E-mail)307853347@qq.com; 胡茂龙, (E-mail)humolon@163.com
更新日期/Last Update: 2023-09-12