[1]卢必慧,邱琳,李卫国,等.基于遥感的作物产量和产量差估算研究进展[J].江苏农业学报,2023,(03):881-894.[doi:doi:10.3969/j.issn.1000-4440.2023.03.030]
 LU Bi-hui,QIU Lin,LI Wei-guo,et al.Research progress on crop yield and yield gap estimation based on remote sensing[J].,2023,(03):881-894.[doi:doi:10.3969/j.issn.1000-4440.2023.03.030]
点击复制

基于遥感的作物产量和产量差估算研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
881-894
栏目:
综述
出版日期:
2023-06-30

文章信息/Info

Title:
Research progress on crop yield and yield gap estimation based on remote sensing
作者:
卢必慧邱琳李卫国王志明田苗王晶单捷
(江苏省农业科学院农业信息研究所,江苏南京210014)
Author(s):
LU Bi-huiQIU LinLI Wei-guoWANG Zhi-mingTIAN MiaoWANG JingSHAN Jie
(Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
产量产量差遥感作物模型限制因素
Keywords:
yieldyield gapremote sensingcrop modellimiting factor
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.030
文献标志码:
A
摘要:
作物产量差研究对于认识当前生产力现状和提高作物产量至关重要。以往产量差研究方法如田间试验、统计分析以及作物生长模型模拟分析,在区域尺度应用时常受限于空间上的异质环境以及田间管理信息不足等因素。本文重点综述了当前利用遥感技术以及遥感结合作物模型等方法来估算作物产量和产量差的研究进展,并介绍了利用遥感技术分析产量差形成因素的方法,最后对当前研究中存在的一些问题以及未来的研究方向进行了讨论和展望。
Abstract:
The study of crop yield gap is very important for understanding the current productivity status and improving crop yield. In regional application, previous yield gap research methods such as field experiment, statistical analysis and crop growth model simulation analysis, are aften limited by factors such as spatial heterogeneous environment and insufficient field management information. This paper focused on the current research progress of using remote sensing technology and remote sensing combined with crop model to estimate crop yield and yield gap, and introduced the method of using remote sensing technology to analyze the factors causing yield gap. Finally, some problems existing in the current research and future research directions were discussed and prospected.

参考文献/References:

[1]ALEXANDRATOS N. World Agriculture: Towards 2010 [R]. New York: FAO, Wiley, 1995.
[2]LOBELL D B, CASSMAN K G, FIELD C B. Crop yield gaps: Their importance, magnitudes, and cause [J]. Annual Review of Environment and Resources, 2009,34(1): 179-204.
[3]贺付伟. 气候变化对中国不同区域马铃薯产量差的影响[J]. 湖北农业科学, 2022, 61(10): 28-32, 38.
[4]CALVIO P, SADRAS V. On-farm assessment of constraints to wheat yield in the south-eastern Pampas [J]. Filed Crops Research, 2002, 74: 1-11.
[5]王纯枝,李良涛,陈健,等. 作物产量差研究与展望[J]. 中国生态农业学报, 2009, 17(6): 1283-1287.
[6]杨晓光,刘志娟. 作物产量差研究进展[J]. 中国农业科学, 2014, 47(14): 2731-2741.
[7]CASSMAN K G. Crop yield potential, yield trends, and global food security in a changing climate [M]//HILLEL D, ROSENZWEIG C. Handbook of climate change and agro-ecosystems: Impacts, Adaptation, and Mitigation. London: Imperial College Press, 2010:37-51.
[8]FINGER R, LAZZAROTTO P, CALANCA P. Bio-economic assessment of climate change impacts on managed grassland production [J]. Agricultural Systems, 2010, 103(9): 666-674.
[9]石全红,刘建刚,陈阜,等. 长江中下游地区水稻产量差及分布特征研究[J]. 中国农业大学学报, 2012, 17(1): 33-39.
[10]MUELLER N D, GERBER J S, JOHNSTON M, et al. Closing yield gaps through nutrient and water management [J]. Nature, 2012, 490(7419):254-257.
[11]BARKER R K, GOMEZ K A, HERDT R W. Farm-level constraints to high rice yields in Asia: 1974-77[R]. Los Banos, Philippines:IRRI, 1979.
[12]GOMEZ K A. On-farm assessment of yield constraints: Methodological problems. Constraints to high yields on asian rice farms: An interim report[R]. Los Banos, Philippines: IRRI, 1977: 1-16.
[13]DE DATTA S K. Principles and practices of rice production [M]. New York (USA): Wiley-Interscience Publications, 1981.
[14]CASSMAN K G, DOBERMANN A, WALTERS D T, et al. Meeting cereal demand while protecting natural resources and improving environmental quality [J]. Annual Review of Environment and Resources, 2003, 28: 315-358.
[15]LOBELL D B, ORTIZ-MONASTERIO J I. Regional importance of crop yield constraints: Linking simulation models and geo-statistics to interpret spatial patterns [J]. Ecological Modelling, 2006, 196: 173-182.
[16]FISCHER R A, EDMEADES G O. Breeding and cereal yield progress [J]. Crop Science, 2010, 50(S1): 85-98.
[17]VAN ITTERSUM M K, CASSMAN K G, GRASSINI P, et al. Yield gap analysis with local to global relevance——A review [J]. Field Crops Research, 2013, 143: 4-17.
[18]EVANS L T, FISCHER R A. Yield potential: its definition, measurement, and significance [J]. Crop Science, 1999, 39: 1544-1551.
[19]GRASSINI P, YANG H, CASSMAN K G. Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions [J]. Agricultural and Forest Meteorology, 2009, 149(8): 1254-1265.
[20]米娜,蔡福,张玉书,等. 雨养作物产量差研究进展[J]. 气象与环境学报, 2018, 34(6): 140-147.
[21]ZHANG H, BAI X, XUE J, et al. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China [J]. PLoS One, 2013, 8: e65277.
[22]PRADHAN P, FISCHER G, VELTHUIZEN H V, et al. Closing yield gaps: how sustainable can we be? [J]. PLoS One, 2015, 10: e0129487.
[23]MENG Q, HOU P, WU L, et al. Understanding production potentials and yield gaps in intensive maize production in China [J]. Field Crops Research, 2013, 143: 91-97.
[24]邓南燕.中国水稻产量差评估及长江中下游地区增产途径探究[D]. 武汉: 华中农业大学, 2018.
[25]FISCHER R A. Definitions and determination of crop yield, yield gaps, and of rates of change [J]. Field Crops Research, 2015, 182: 9-18.
[26]NEUMANN K, VERBURG P H, STEHFEST E, et al. The yield gap of global grain production: a spatial analysis [J]. Agricultural Systems, 2010, 103: 316-326.
[27]SUN K G, WANG L G. Effect of different fertilization practices on yield of a wheat-maize rotation and soil fertility [J]. Pedosphere, 2002, 12(3): 283-288.
[28]SCHILS R, OLESEN J E, KERSEBAUM K C, et al. Cereal yield gaps across Europe[J]. European Journal of Agronomy, 2018, 101: 109-120.
[29]WHITE J W, CORBETT J D, DOBERMANN A. Insufficient geographic characterization and analysis in the planning, execution and dissemination of agronomic research [J]. Field Crops Research, 2002, 76:45-54.
[30]薛建福,刘昌斌,韩敬敬,等. 基于农户尺度的闻喜县冬小麦产量差及生产限制因素分析[J]. 山西农业大学学报(自然科学版),2022,42(1):26-34.
[31]SURABOL N, VIRAKUL P, POTAN N, et al. Preliminary survey on soybean yield gap analysis in Thailand [M]. Bogor, Indonesia: CGPRT Centre,1989.
[32]SUMARNO, DAUPHIN F, RACHIM A, et al. Soybean yield gap analysis in Java: a report of the soybean yield gap analysis project [M]. Bogor, Indonesia: CGPRT Center,1988.
[33]刘志娟,杨晓光,吕硕,等. 东北三省春玉米产量差时空分布特征[J]. 中国农业科学, 2017, 50(9):1606-1616.
[34]SUMBERG J. Mind the (yield) gap(s) [J]. Food Security, 2012, 4(4): 509-518.
[35]ABELEDO L G, SAVIN R, SLAFER G A. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model [J]. European Journal of Agronomy, 2008, 28(4): 541-550.
[36]LIU Z, YANG X, HUBBARD K G, et al. Maize potential yields and yield gaps in the changing climate of northeast China [J]. Global Change Biology, 2012, 18: 3441-3454.
[37]郭尔静,杨晓光,王晓煜,等. 湖南省双季稻产量差时空分布特征[J]. 中国农业科学, 2017, 50(2): 399-412.
[38]秦雅倩,孙嘉玥,王岩,等. 基于WOFOST 模型的河南省冬小麦产量差的时空特征分析[J]. 江苏农业科学, 2022, 50(5): 191-198.
[39]WANG J, WANG E, YIN H, et al. Declining yield potential and shrinking yield gaps of maize in the North China Plain [J]. Agricultural and Forest Meteorology, 2014, 195/196: 89-101.
[40]TAO F, ZHANG S, ZHANG Z, et al. Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China [J]. Agriculture Ecosystems & Environment, 2015, 208:12-20.
[41]LOBELL D B, ORITIZ-MONASTERIO J I, ADDAMS C L, et al. Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing [J]. Agricultural and Forest Methodology, 2002, 114: 31-43.
[42]LOBELL D B, ORITIZ-MONASTERIO J I, ASNER G P, et al. Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape [J]. Agronomy Journal, 2005, 97 (1): 241-249.
[43]吴炳方. 全国农情监测与估产的运行化遥感方法[J]. 地理学报, 2000, 55(1): 25-35.
[44]孟庆岩,李强子,吴炳方. 农作物单产预测的运行化方法[J]. 遥感学报, 2004, 8(6): 603-610.
[45]代立芹,吴炳方,李强子,等. 作物单产预测方法研究进展[J]. 农业网络信息, 2006(4): 24-27.
[46]THENKABAIL P S, WARD A D, LYON J G. Landsat-5 thematic mapper models of soybean and corn crop characteristics [J]. International Journal of Remote Sensing, 1994, 15(1): 49-61.
[47]杨鹏,吴文斌,周清波,等. 基于光谱反射信息的作物单产估测模型研究进展[J]. 农业工程学报, 2008, 24(10): 262-268.
[48]WANG J W, ZHANG J H, YUN B, et al. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in Northeast China [J]. Field Crops Research, 2020, 246: 107682.
[49]徐新刚,吴炳方,蒙继华,等. 农作物单产遥感估算模型研究进展[J]. 农业工程学报, 2008, 24(2): 290-298.
[50]LOBELL D B, THAU D, SEIFERT C, et al. A scalable satellite-based crop yield mapper [J]. Remote Sensing of Environment, 2015, 164: 324-333.
[51]LOBELL D B, AZZARI G. Satellite detection of rising maize yield heterogeneity in the U.S. Midwest [J]. Environmental Research Letters, 2017, 12(1): 014014.
[52]AZZARI G, JAIN M, LOBELL D B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries [J]. Remote Sensing of Environment, 2017,202: 129-141.
[53]JIN Z, AZZARI G, YOU C, et al. Smallholder maize area and yield mapping at national scales with Google Earth Engine [J]. Remote Sensing of Environment, 2019, 228:115-128.
[54]FARMAHA B S, LOBELL D B, BOONE K E, et al. Contribution of persistent factors to yield gaps in high-yield irrigated maize [J]. Field Crops Research, 2016, 186: 124-132.
[55]JAIN M, SINGH B, SRIVASTAVA A A K, et al. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt [J]. Environmental Research Letters, 2017, 12(9): 094011.
[56]DEINES J M, PATEL R, LIANG S Z, et al. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt [J]. Remote Sensing of Environment, 2021, 253:112174.
[57]MONTEITH J L. Climate and the efficiency of crop production in Britain [J]. Philosophical Transactions of the Royal Society of Lond. B, Biological Sciences, 1977, 281: 277-294.
[58]FIELD C B, RANDERSON J T, MALMSTROEM C M. Global net primary production: Combining ecology and remote sensing [J]. Remote Sensing of Environment, 1995, 51(1): 74-88.
[59]LOBELL D B. The use of satellite data for crop yield gap analysis [J]. Field Crops Research, 2013, 143: 56-64.
[60]DUCHEMIN B, MAISONGRANDE P, BOULET G, et al. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index [J]. Environmental Modelling & Software, 2008, 23(7): 876-892.
[61]任建强,陈仲新,唐华俊,等. 基于植物净初级生产力模型的区域冬小麦估产研究[J]. 农业工程学报, 2006, 22(5): 112-118.
[62]ZHOU Y, ZHU H Z, CAI S B, et al. Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000 [J]. Crop Science, 2007, 157(3): 465-473.
[63]POTTER C B, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data [J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
[64]VEROUSTRAETE F, SABBE H, EERENS H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment, 2002, 83(3): 376-399.
[65]XIAO X M, ZHANG Q Y, BRASWELL B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J].Remote Sensing of Environment, 2004, 91(2): 256-270.
[66]YUAN W P , LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural & Forest Meteorology, 2007, 143(3/4):189-207.
[67]LOBELL D B, ASNER G P, ORTIZ-MONASTERIO J I, et al. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties [J]. Agriculture Ecosystem & Environment, 2003, 94 (2): 205-220.
[68]GUAN K, BERRY J A, ZHANG Y, et al. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence [J]. Global Change Biology, 2016, 22:716-726.
[69]YUAN W P, CHEN Y, XIA J Z, et al. Estimating crop yield using a satellite-based light use efficiency model [J]. Ecological Indicators, 2016, 60: 702-709.
[70]LU D S. The potential and challenge of remote sensing based biomass estimation [J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
[71]GUO C, TANG Y, LU J, et al. Predicting wheat productivity: Integrating time series of vegetation indices into crop modeling via sequential assimilation [J]. Agricultural & Forest Meteorology, 2019, 272/273:69-80.
[72]SCHUT A G T, TRAORE P C S, BLAES X, et al. Assessing yield and fertilizer response in heterogeneous smallholder fields with UAVs and satellites [J]. Field Crops Research, 2018, 221:98-107.
[73]赵艳霞,周秀骥,梁顺林. 遥感信息与作物生长模式的结合方法和应用——研究进展[J]. 自然灾害学报, 2005, 14(1): 103-109.
[74]黄健熙,黄海,马鸿元,等. 遥感与作物生长模型数据同化应用综述[J]. 农业工程学报, 2018, 34(21):144-156.
[75]GUERIF M, DUKE C L. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation [J]. Agriculture Ecosystems & Environment, 2000, 81(1): 57-69.
[76]JEGO G, PATTEY E, LIU J. Using leaf area index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops [J]. Field Crops Research, 2012, 131(2): 63-74.
[77]HUANG J, TIAN L, LIANG S, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model [J]. Agricultural and Forest Meteorology, 2015, 204: 106-121.
[78]ZHAO Y, CHEN S, SHEN S. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation [J]. Ecological Modelling, 2013, 270(2): 30-42.
[79]CURNEL Y, DEWIT A J W, DUVEILLER G, et al. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment [J]. Agricultural & Forest Meteorology, 2011, 151:1843-1855.
[80]DEWIT A, DUVEILLER G, DEFOURNY P. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations [J]. Agricultural & Forest Meteorology, 2012, 164:39-52.
[81]HUANG J, TIAN L, LIANG S, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model [J]. Agricultural & Forest Meteorology, 2015, 204:106-121.
[82]XIE Y, WANG P, BAI X, et al. Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model [J]. Agricultural & Forest Meteorology, 2017, 246:194-206.
[83]HUANG J, MA H, SEDANO F, et al. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model [J]. European Journal of Agronomy, 2019, 102:1-13.
[84]RUNNING S W, COUGHLAN J C. A general model of forest ecosystem processes for regional applications I. hydrologic balance, canopy gas exchange and primary production processes [J]. Ecological Modelling, 1988, 42: 125-154.
[85]王培娟,谢东辉,张佳华,等. BEPS模型在华北平原冬小麦估产中的应用[J]. 农业工程学报, 2009, 25(10): 148-153.
[86]高佳华. 基于遥感模型的长江中下游一季稻产量差估算[D]. 荆州: 长江大学, 2018.
[87]LIU J, CHEN J M, CIHLAR J, et al. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data [J]. Journal of Geophysical Research, 1999, 104(22): 27735-27754.
[88]JIANG C, RYU Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulation (BESS) [J]. Remote Sensing of Environment, 2016, 186: 528-547.
[89]JU W M, GAO P, ZHOU Y L, et al. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China [J]. International Journal of Remote Sensing, 2010, 31(6): 1573-1587.
[90]WANG P J, SUN R, ZHANG J H, et al. Yield estimation of winter wheat in the North China Plain using the remote sensing photosynthesis-yield estimation for crops (RS-P-YEC) model [J]. International Journal of Remote Sensing, 2011, 32(21): 6335-6348.
[91]JEONG J H, RESOP J P, MUELLER N D, et al. Random Forests for global and regional crop yield predictions [J]. PLoS One, 2016, 11:e0156571.
[92]HAN J, ZHANG Z, CAO J, et al. Prediction of winter wheat yield based on multi-source data and machine learning in China [J]. Remote Sensing, 2020, 12:236.
[93]ISLAM N, RASHID M, WIBOWO S, et al. Early weed detection using image processing and machine learning techniques in an Australian chilli farm [J]. Agriculture, 2021, 11:387.
[94]MURUGANANTHAM P, WIBOWO S, GRANDHI S, et al. A systematic literature review on crop yield prediction with deep learning and remote sensing [J]. Remote Sensing, 2022, 14:1990.
[95]LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521:436-444.
[96]YUAN Q, SHEN H, LI T, et al. Deep learning in environmental remote sensing: Achievements and challenges [J]. Remote Sensing of Environment, 2020, 241:111716.
[97]NEVAVUORI P, NARRA N, LIPPING T. Crop yield prediction with deep convolutional neural networks [J]. Computers & Electronics in Agriculture, 2019, 163:104859.
[98]YANG Q, SHI L, HAN J, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images [J]. Field Crops Research, 2019, 235:142-153.
[99]JIANG H, HU H, ZHONG R, et al. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US corn belt at the county level [J]. Global Change Biology, 2020, 26:1754-1766.
[100]WANG X, HUANG J, FENG Q, et al. Winter wheat yield prediction at county level and uncertainty analysis in main wheat producing regions of China with deep learning approaches [J]. Remote Sensing, 2020, 12:1744.
[101]WOLANIN A, CAMPSVALLS G, MERONI M, et al. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt [J]. Environmental Research Letters, 2020, 15:024019.
[102]XIE Y, HUANG J. Integration of a crop growth model and deep learning methods to improve satellite-based yield estimation of winter wheat in Henan Province, China [J]. Remote Sensing, 2021, 13:4372.
[103]刘保花,陈新平,崔振岭,等. 三大粮食作物产量潜力与产量差研究进展[J]. 中国生态农业学报, 2015, 23(5): 525-534.
[104]王纯枝,宇振荣,辛景峰,等. 基于遥感和作物生长模型的作物产量差估测[J]. 农业工程学报, 2005, 21(7): 84-89.
[105]SCHULTHESS U, TIMSINA J, HERRERA J M, et al. Mapping field-scale yield gaps for maize: An example from Bangladesh [J]. Field Crops Research, 2013, 143(1): 151-156.
[106]POURHADIAN H, KAMKAR B, SOLTANI A, et al. Evaluation of forage maize yield gap using an integrated crop simulation model-satellite imagery method (Case study: Four watershed basins in Golestan Province) [J]. Archives of Agronomy and Soil Science, 2019,65(2):253-268.
[107]LABORTE A G, DE BIE K, SMALING E M A, et al. Rice yields and yield gaps in Southeast Asia: past trends and future outlook [J]. European Journal of Agronomy, 2012, 36: 9-20.
[108]BASSTIAANSSEN W G M, ALI S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan [J]. Agriculture Ecosystems & Environment, 2003, 94: 321-340.
[109]ZHANG S, BAI Y, ZHANG J. Remote sensing-based quantification of the summer maize yield gap induced by suboptimum sowing dates over North China Plain [J]. Remote Sensing, 2021,13(18):3582.
[110]DEHKORDI P A, NEHBANDANI A, HASSANPOUR-BOURKHEILI S, et al. Yield gap analysis using remote sensing and modelling approaches: Wheat in the Northwest of Iran [J]. International Journal of Plant Production, 2020, 14(3): 443-452.
[111]HOCHMAN Z, GOBBETT D, HOLZWORTH D, et al. Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia [J]. Field Crops Research, 2012, 136: 85-96.
[112]MANN M L, WARNER J M. Ethiopian wheat yield and yield gap estimation: A spatially explicit small area integrated data approach [J]. Field Crops Research, 2017, 201: 60-74.
[113]LOW F, BIRADAR C, FLIEMANN E, et al. Assessing gaps in irrigated agricultural productivity through satellite earth observations——a case study of the Fergana Valley, Central Asia [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 59: 118-134.
[114]ZHAO Y, CHEN X, CUI Z, et al. Using satellite remote sensing to understand maize yield gaps in the North China Plain [J]. Field Crops Research, 2015, 183: 31-42.
[115]ZHAO Y, CHEN X P, LOBELL D B. An approach to understanding persistent yield variation-A case study in North China [J]. European Journal of Agronomy, 2016, 77: 10-19.
[116]ZHAO Y, LOBELL D B. Assessing the heterogeneity and persistence of farmers’ maize yield performance across the North China Plain [J]. Field Crops Research, 2017, 205: 55-66.
[117]LIU B, CHEN X, MENG Q, et al. Estimating maize yield potential and yield gap with agro-climatic zones in China——Distinguish irrigated and rainfed conditions [J]. Agricultural & Forest Meteorology, 2017, 239: 108-117.
[118]LOBELL D B, ORTIZ-MONASTERIO J I, FALCON W P. Yield uncertainty at the field scale evaluated with multi-year satellite data [J]. Agricultural Systems, 2007, 92: 76-90.
[119]LIU Z, YANG X, LIN X, et al. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China [J]. Science of the Total Environment, 2016, 541: 756-764.
[120]LOBELL D B, OORTIZ-MONASTERIO J I, LEE A S. Satellite evidence for yield growth opportunities in Northwest India [J]. Field Crops Research,2010, 118: 13-20.
[121]TITTONELL P, SHEPHERD K D, VANLAUWE B, et al. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya——an application of classification and regression tree analysis[J]. Agriculture Ecosystems & Environment, 2008, 123: 137-150.
[122]BEZA E, SILVA J V, KOOISTRA L, et al. Review of yield gap explaining factors and opportunities for alternative data collection approaches [J]. European Journal of Agronomy, 2017, 82: 206-222.
[123]YAN L, ROY D P. Automated crop field extraction from multi-temporal web enabled Landsat data [J]. Remote Sensing of Environment, 2014, 144:42-64.
[124]DE L, OVANDO G, BRESSANINI L, et al. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 531-547.
[125]ZHANG C, WALTERS D, KOVACS J M. Applications of low altitude remote sensing in agriculture upon farmers’ requests——A case study in northeastern Ontario, Canada [J]. PLoS One, 2014, 9 (11): e112894.
[126]CECILE G, VISCARRA R A, MCBRATNEY A B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study [J]. Geoderma, 2008, 146 (3/4): 403-411.
[127]PETROPOULOS G P, IRELAND G, BARRETT B. Surface soil moisture retrievals from remote sensing: current status, products & future trends [J]. Physics and Chemistry of the Earth,2015,83-84:36-56.
[128]JIJI G W, NADAR P. Soil type identification using remotely sensed data for agricultural purpose [J]. Journal of the Institution Engineers, 2016,97(1):405-411.
[129]BAI J, LI J, LI S. Monitoring the plant density of cotton with remotely sensed data[C]//LI D, LIU Y, CHEN Y. International Conference on Computer and Computing Technologies in Agriculture. Berlin, Heidelberg: Springer, 2011:90-101.
[130]JAIN M, MONDAL P, DEFRIES R S, et al. Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors [J]. Remote Sensing of Environment, 2013, 134: 210-223.
[131]DROOGERS P, IMMERZEEL W W, LORITE I J. Estimating actual irrigation application by remotely sensed evapotranspiration observations [J]. Agricultural Water Management, 2010, 97(9): 1351-1359.
[132]GOEL P K, PRASHER S O, LANDRY J A, et al. Potential of airborne hyper-spectral remote sensing to detect nitrogen deficiency and weed infestation in corn [J]. Computers and Electronics in Agriculture, 2003, 38 (2): 99-124.
[133]CAO X, LUO Y, ZHOU Y, et al. Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance [J]. Crop Protection, 2013, 45: 124-131.
[134]ZHENG B, CAMPBELL J B, SERBIN G, et al. Remote sensing of crop residue and tillage practices: present capabilities and future prospects [J]. Soil Tillage Research, 2014, 138: 26-34.
[135]DJURFELDT G, HALL O, JIRSTROM M, et al. Using panel survey and remote sensing data to explain yield gaps for maize in sub-Saharan Africa [J]. Journal of Land Use Science, 2018, 13(3): 1-14.

相似文献/References:

[1]顾大路,王伟中,孙爱侠,等.不同轮作模式对日光温室黄瓜生长的影响[J].江苏农业学报,2016,(04):874.[doi:10.3969/j.issn.100-4440.2016.04.025]
 GU Da-lu,WANG Wei-zhong,SUN Ai-xia,et al.Cucumber growth in solar greenhouse affected by rotation modes[J].,2016,(03):874.[doi:10.3969/j.issn.100-4440.2016.04.025]
[2]孙艳军,史珑燕,徐刚,等.锌肥施用量对大蒜产量、品质及矿质元素含量的影响[J].江苏农业学报,2016,(04):891.[doi:10.3969/j.issn.100-4440.2016.04.028]
 SUN Yan-jun,SHI Long-yan,XU Gang,et al.Yield, quality and mineral element content of garlic in response to zinc fertilization[J].,2016,(03):891.[doi:10.3969/j.issn.100-4440.2016.04.028]
[3]罗汉东,王华,付艳秋,等.油茶果实性状、养分含量和产油量对磷水平的响应[J].江苏农业学报,2016,(04):898.[doi:10.3969/j.issn.100-4440.2016.04.029]
 LUO Han-dong,WANG Hua,FU Yan-qiu,et al.Fruit traits, nutrient content and oil content of Camellia oleifera in response to phosphorus levels[J].,2016,(03):898.[doi:10.3969/j.issn.100-4440.2016.04.029]
[4]王振楠,杨美玲,刘鸯,等.丛枝菌根真菌对红花生长及根际土壤微环境的影响[J].江苏农业学报,2016,(04):904.[doi:10.3969/j.issn.100-4440.2016.04.030]
 WANG Zhen-nan,YANG Mei-ling,LIU Yang,et al.Effects of arbuscular mycorrhization on the growth of safflower and the microenvironment of rhizosphere soil[J].,2016,(03):904.[doi:10.3969/j.issn.100-4440.2016.04.030]
[5]王志春.棉花秸秆培养料对金针菇产量和品质的影响[J].江苏农业学报,2016,(04):917.[doi:10.3969/j.issn.100-4440.2016.04.032]
 Xinyang Agricultural Experimental Station,Yancheng 09,China.Influence of cotton stalk on the needle mushroom yield and quality[J].,2016,(03):917.[doi:10.3969/j.issn.100-4440.2016.04.032]
[6]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(03):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[7]谭芳,经艳,王伦旺,等.不同施肥量和种植密度对桂糖32号甘蔗蔗糖分和产量的影响[J].江苏农业学报,2016,(05):1055.[doi:10.3969/j.issn.1000-4440.2016.05.016]
 TAN Fang,JING Yan,WANG Lun-wang,et al.Yield and sucrose content of sugar cane Guitang32 influenced by fertilizer application rates and planting densities[J].,2016,(03):1055.[doi:10.3969/j.issn.1000-4440.2016.05.016]
[8]张国芹,牟建梅,何玲莉,等.氮硅配施对不结球白菜养分吸收及产量和品质的影响[J].江苏农业学报,2016,(05):1128.[doi:10.3969/j.issn.1000-4440.2016.05.028]
 ZHANG Guo-qin,MOU Jian-mei,HE Ling-li,et al.Effects of nitrogen-silicon applications on nutrient absorption, yield and quality of Brassica chinensis[J].,2016,(03):1128.[doi:10.3969/j.issn.1000-4440.2016.05.028]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(03):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]杨长琴,张国伟,刘瑞显.种植密度与缩节胺(DPC)对麦后直播机采棉产量和品质的影响[J].江苏农业学报,2016,(06):1288.[doi:doi:10.3969/j.issn.1000-4440.2016.06.015]
 YANG Chang-qin,ZHANG Guo-wei,LIU Rui-xian.Effects of planting density and dimethyl piperidinium chloride (DPC) on yields and fiber qualities of machine picked cotton after barley harvesting[J].,2016,(03):1288.[doi:doi:10.3969/j.issn.1000-4440.2016.06.015]

备注/Memo

备注/Memo:
收稿日期:2022-06-09 基金项目:国家重点研发计划(政府间国际合作)项目(2021YFE0104400);江苏省自然科学基金项目 (BK20200281) ;江苏省农业科技自主创新基金项目[CX(22)2001] 作者简介:卢必慧(1989-),女,安徽滁州人,硕士,助理研究员,主要从事农业遥感与作物模型估产研究。(E-mail)20140029@jaas.ac.cn 通讯作者:邱琳,(E-mail)qiulin_81@163.com
更新日期/Last Update: 2023-07-11