参考文献/References:
[1]ALEXANDRATOS N. World Agriculture: Towards 2010 [R]. New York: FAO, Wiley, 1995.
[2]LOBELL D B, CASSMAN K G, FIELD C B. Crop yield gaps: Their importance, magnitudes, and cause [J]. Annual Review of Environment and Resources, 2009,34(1): 179-204.
[3]贺付伟. 气候变化对中国不同区域马铃薯产量差的影响[J]. 湖北农业科学, 2022, 61(10): 28-32, 38.
[4]CALVIO P, SADRAS V. On-farm assessment of constraints to wheat yield in the south-eastern Pampas [J]. Filed Crops Research, 2002, 74: 1-11.
[5]王纯枝,李良涛,陈健,等. 作物产量差研究与展望[J]. 中国生态农业学报, 2009, 17(6): 1283-1287.
[6]杨晓光,刘志娟. 作物产量差研究进展[J]. 中国农业科学, 2014, 47(14): 2731-2741.
[7]CASSMAN K G. Crop yield potential, yield trends, and global food security in a changing climate [M]//HILLEL D, ROSENZWEIG C. Handbook of climate change and agro-ecosystems: Impacts, Adaptation, and Mitigation. London: Imperial College Press, 2010:37-51.
[8]FINGER R, LAZZAROTTO P, CALANCA P. Bio-economic assessment of climate change impacts on managed grassland production [J]. Agricultural Systems, 2010, 103(9): 666-674.
[9]石全红,刘建刚,陈阜,等. 长江中下游地区水稻产量差及分布特征研究[J]. 中国农业大学学报, 2012, 17(1): 33-39.
[10]MUELLER N D, GERBER J S, JOHNSTON M, et al. Closing yield gaps through nutrient and water management [J]. Nature, 2012, 490(7419):254-257.
[11]BARKER R K, GOMEZ K A, HERDT R W. Farm-level constraints to high rice yields in Asia: 1974-77[R]. Los Banos, Philippines:IRRI, 1979.
[12]GOMEZ K A. On-farm assessment of yield constraints: Methodological problems. Constraints to high yields on asian rice farms: An interim report[R]. Los Banos, Philippines: IRRI, 1977: 1-16.
[13]DE DATTA S K. Principles and practices of rice production [M]. New York (USA): Wiley-Interscience Publications, 1981.
[14]CASSMAN K G, DOBERMANN A, WALTERS D T, et al. Meeting cereal demand while protecting natural resources and improving environmental quality [J]. Annual Review of Environment and Resources, 2003, 28: 315-358.
[15]LOBELL D B, ORTIZ-MONASTERIO J I. Regional importance of crop yield constraints: Linking simulation models and geo-statistics to interpret spatial patterns [J]. Ecological Modelling, 2006, 196: 173-182.
[16]FISCHER R A, EDMEADES G O. Breeding and cereal yield progress [J]. Crop Science, 2010, 50(S1): 85-98.
[17]VAN ITTERSUM M K, CASSMAN K G, GRASSINI P, et al. Yield gap analysis with local to global relevance——A review [J]. Field Crops Research, 2013, 143: 4-17.
[18]EVANS L T, FISCHER R A. Yield potential: its definition, measurement, and significance [J]. Crop Science, 1999, 39: 1544-1551.
[19]GRASSINI P, YANG H, CASSMAN K G. Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions [J]. Agricultural and Forest Meteorology, 2009, 149(8): 1254-1265.
[20]米娜,蔡福,张玉书,等. 雨养作物产量差研究进展[J]. 气象与环境学报, 2018, 34(6): 140-147.
[21]ZHANG H, BAI X, XUE J, et al. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China [J]. PLoS One, 2013, 8: e65277.
[22]PRADHAN P, FISCHER G, VELTHUIZEN H V, et al. Closing yield gaps: how sustainable can we be? [J]. PLoS One, 2015, 10: e0129487.
[23]MENG Q, HOU P, WU L, et al. Understanding production potentials and yield gaps in intensive maize production in China [J]. Field Crops Research, 2013, 143: 91-97.
[24]邓南燕.中国水稻产量差评估及长江中下游地区增产途径探究[D]. 武汉: 华中农业大学, 2018.
[25]FISCHER R A. Definitions and determination of crop yield, yield gaps, and of rates of change [J]. Field Crops Research, 2015, 182: 9-18.
[26]NEUMANN K, VERBURG P H, STEHFEST E, et al. The yield gap of global grain production: a spatial analysis [J]. Agricultural Systems, 2010, 103: 316-326.
[27]SUN K G, WANG L G. Effect of different fertilization practices on yield of a wheat-maize rotation and soil fertility [J]. Pedosphere, 2002, 12(3): 283-288.
[28]SCHILS R, OLESEN J E, KERSEBAUM K C, et al. Cereal yield gaps across Europe[J]. European Journal of Agronomy, 2018, 101: 109-120.
[29]WHITE J W, CORBETT J D, DOBERMANN A. Insufficient geographic characterization and analysis in the planning, execution and dissemination of agronomic research [J]. Field Crops Research, 2002, 76:45-54.
[30]薛建福,刘昌斌,韩敬敬,等. 基于农户尺度的闻喜县冬小麦产量差及生产限制因素分析[J]. 山西农业大学学报(自然科学版),2022,42(1):26-34.
[31]SURABOL N, VIRAKUL P, POTAN N, et al. Preliminary survey on soybean yield gap analysis in Thailand [M]. Bogor, Indonesia: CGPRT Centre,1989.
[32]SUMARNO, DAUPHIN F, RACHIM A, et al. Soybean yield gap analysis in Java: a report of the soybean yield gap analysis project [M]. Bogor, Indonesia: CGPRT Center,1988.
[33]刘志娟,杨晓光,吕硕,等. 东北三省春玉米产量差时空分布特征[J]. 中国农业科学, 2017, 50(9):1606-1616.
[34]SUMBERG J. Mind the (yield) gap(s) [J]. Food Security, 2012, 4(4): 509-518.
[35]ABELEDO L G, SAVIN R, SLAFER G A. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model [J]. European Journal of Agronomy, 2008, 28(4): 541-550.
[36]LIU Z, YANG X, HUBBARD K G, et al. Maize potential yields and yield gaps in the changing climate of northeast China [J]. Global Change Biology, 2012, 18: 3441-3454.
[37]郭尔静,杨晓光,王晓煜,等. 湖南省双季稻产量差时空分布特征[J]. 中国农业科学, 2017, 50(2): 399-412.
[38]秦雅倩,孙嘉玥,王岩,等. 基于WOFOST 模型的河南省冬小麦产量差的时空特征分析[J]. 江苏农业科学, 2022, 50(5): 191-198.
[39]WANG J, WANG E, YIN H, et al. Declining yield potential and shrinking yield gaps of maize in the North China Plain [J]. Agricultural and Forest Meteorology, 2014, 195/196: 89-101.
[40]TAO F, ZHANG S, ZHANG Z, et al. Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China [J]. Agriculture Ecosystems & Environment, 2015, 208:12-20.
[41]LOBELL D B, ORITIZ-MONASTERIO J I, ADDAMS C L, et al. Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing [J]. Agricultural and Forest Methodology, 2002, 114: 31-43.
[42]LOBELL D B, ORITIZ-MONASTERIO J I, ASNER G P, et al. Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape [J]. Agronomy Journal, 2005, 97 (1): 241-249.
[43]吴炳方. 全国农情监测与估产的运行化遥感方法[J]. 地理学报, 2000, 55(1): 25-35.
[44]孟庆岩,李强子,吴炳方. 农作物单产预测的运行化方法[J]. 遥感学报, 2004, 8(6): 603-610.
[45]代立芹,吴炳方,李强子,等. 作物单产预测方法研究进展[J]. 农业网络信息, 2006(4): 24-27.
[46]THENKABAIL P S, WARD A D, LYON J G. Landsat-5 thematic mapper models of soybean and corn crop characteristics [J]. International Journal of Remote Sensing, 1994, 15(1): 49-61.
[47]杨鹏,吴文斌,周清波,等. 基于光谱反射信息的作物单产估测模型研究进展[J]. 农业工程学报, 2008, 24(10): 262-268.
[48]WANG J W, ZHANG J H, YUN B, et al. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in Northeast China [J]. Field Crops Research, 2020, 246: 107682.
[49]徐新刚,吴炳方,蒙继华,等. 农作物单产遥感估算模型研究进展[J]. 农业工程学报, 2008, 24(2): 290-298.
[50]LOBELL D B, THAU D, SEIFERT C, et al. A scalable satellite-based crop yield mapper [J]. Remote Sensing of Environment, 2015, 164: 324-333.
[51]LOBELL D B, AZZARI G. Satellite detection of rising maize yield heterogeneity in the U.S. Midwest [J]. Environmental Research Letters, 2017, 12(1): 014014.
[52]AZZARI G, JAIN M, LOBELL D B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries [J]. Remote Sensing of Environment, 2017,202: 129-141.
[53]JIN Z, AZZARI G, YOU C, et al. Smallholder maize area and yield mapping at national scales with Google Earth Engine [J]. Remote Sensing of Environment, 2019, 228:115-128.
[54]FARMAHA B S, LOBELL D B, BOONE K E, et al. Contribution of persistent factors to yield gaps in high-yield irrigated maize [J]. Field Crops Research, 2016, 186: 124-132.
[55]JAIN M, SINGH B, SRIVASTAVA A A K, et al. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt [J]. Environmental Research Letters, 2017, 12(9): 094011.
[56]DEINES J M, PATEL R, LIANG S Z, et al. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt [J]. Remote Sensing of Environment, 2021, 253:112174.
[57]MONTEITH J L. Climate and the efficiency of crop production in Britain [J]. Philosophical Transactions of the Royal Society of Lond. B, Biological Sciences, 1977, 281: 277-294.
[58]FIELD C B, RANDERSON J T, MALMSTROEM C M. Global net primary production: Combining ecology and remote sensing [J]. Remote Sensing of Environment, 1995, 51(1): 74-88.
[59]LOBELL D B. The use of satellite data for crop yield gap analysis [J]. Field Crops Research, 2013, 143: 56-64.
[60]DUCHEMIN B, MAISONGRANDE P, BOULET G, et al. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index [J]. Environmental Modelling & Software, 2008, 23(7): 876-892.
[61]任建强,陈仲新,唐华俊,等. 基于植物净初级生产力模型的区域冬小麦估产研究[J]. 农业工程学报, 2006, 22(5): 112-118.
[62]ZHOU Y, ZHU H Z, CAI S B, et al. Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000 [J]. Crop Science, 2007, 157(3): 465-473.
[63]POTTER C B, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data [J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
[64]VEROUSTRAETE F, SABBE H, EERENS H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment, 2002, 83(3): 376-399.
[65]XIAO X M, ZHANG Q Y, BRASWELL B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J].Remote Sensing of Environment, 2004, 91(2): 256-270.
[66]YUAN W P , LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural & Forest Meteorology, 2007, 143(3/4):189-207.
[67]LOBELL D B, ASNER G P, ORTIZ-MONASTERIO J I, et al. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties [J]. Agriculture Ecosystem & Environment, 2003, 94 (2): 205-220.
[68]GUAN K, BERRY J A, ZHANG Y, et al. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence [J]. Global Change Biology, 2016, 22:716-726.
[69]YUAN W P, CHEN Y, XIA J Z, et al. Estimating crop yield using a satellite-based light use efficiency model [J]. Ecological Indicators, 2016, 60: 702-709.
[70]LU D S. The potential and challenge of remote sensing based biomass estimation [J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
[71]GUO C, TANG Y, LU J, et al. Predicting wheat productivity: Integrating time series of vegetation indices into crop modeling via sequential assimilation [J]. Agricultural & Forest Meteorology, 2019, 272/273:69-80.
[72]SCHUT A G T, TRAORE P C S, BLAES X, et al. Assessing yield and fertilizer response in heterogeneous smallholder fields with UAVs and satellites [J]. Field Crops Research, 2018, 221:98-107.
[73]赵艳霞,周秀骥,梁顺林. 遥感信息与作物生长模式的结合方法和应用——研究进展[J]. 自然灾害学报, 2005, 14(1): 103-109.
[74]黄健熙,黄海,马鸿元,等. 遥感与作物生长模型数据同化应用综述[J]. 农业工程学报, 2018, 34(21):144-156.
[75]GUERIF M, DUKE C L. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation [J]. Agriculture Ecosystems & Environment, 2000, 81(1): 57-69.
[76]JEGO G, PATTEY E, LIU J. Using leaf area index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops [J]. Field Crops Research, 2012, 131(2): 63-74.
[77]HUANG J, TIAN L, LIANG S, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model [J]. Agricultural and Forest Meteorology, 2015, 204: 106-121.
[78]ZHAO Y, CHEN S, SHEN S. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation [J]. Ecological Modelling, 2013, 270(2): 30-42.
[79]CURNEL Y, DEWIT A J W, DUVEILLER G, et al. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment [J]. Agricultural & Forest Meteorology, 2011, 151:1843-1855.
[80]DEWIT A, DUVEILLER G, DEFOURNY P. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations [J]. Agricultural & Forest Meteorology, 2012, 164:39-52.
[81]HUANG J, TIAN L, LIANG S, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model [J]. Agricultural & Forest Meteorology, 2015, 204:106-121.
[82]XIE Y, WANG P, BAI X, et al. Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model [J]. Agricultural & Forest Meteorology, 2017, 246:194-206.
[83]HUANG J, MA H, SEDANO F, et al. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model [J]. European Journal of Agronomy, 2019, 102:1-13.
[84]RUNNING S W, COUGHLAN J C. A general model of forest ecosystem processes for regional applications I. hydrologic balance, canopy gas exchange and primary production processes [J]. Ecological Modelling, 1988, 42: 125-154.
[85]王培娟,谢东辉,张佳华,等. BEPS模型在华北平原冬小麦估产中的应用[J]. 农业工程学报, 2009, 25(10): 148-153.
[86]高佳华. 基于遥感模型的长江中下游一季稻产量差估算[D]. 荆州: 长江大学, 2018.
[87]LIU J, CHEN J M, CIHLAR J, et al. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data [J]. Journal of Geophysical Research, 1999, 104(22): 27735-27754.
[88]JIANG C, RYU Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulation (BESS) [J]. Remote Sensing of Environment, 2016, 186: 528-547.
[89]JU W M, GAO P, ZHOU Y L, et al. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China [J]. International Journal of Remote Sensing, 2010, 31(6): 1573-1587.
[90]WANG P J, SUN R, ZHANG J H, et al. Yield estimation of winter wheat in the North China Plain using the remote sensing photosynthesis-yield estimation for crops (RS-P-YEC) model [J]. International Journal of Remote Sensing, 2011, 32(21): 6335-6348.
[91]JEONG J H, RESOP J P, MUELLER N D, et al. Random Forests for global and regional crop yield predictions [J]. PLoS One, 2016, 11:e0156571.
[92]HAN J, ZHANG Z, CAO J, et al. Prediction of winter wheat yield based on multi-source data and machine learning in China [J]. Remote Sensing, 2020, 12:236.
[93]ISLAM N, RASHID M, WIBOWO S, et al. Early weed detection using image processing and machine learning techniques in an Australian chilli farm [J]. Agriculture, 2021, 11:387.
[94]MURUGANANTHAM P, WIBOWO S, GRANDHI S, et al. A systematic literature review on crop yield prediction with deep learning and remote sensing [J]. Remote Sensing, 2022, 14:1990.
[95]LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521:436-444.
[96]YUAN Q, SHEN H, LI T, et al. Deep learning in environmental remote sensing: Achievements and challenges [J]. Remote Sensing of Environment, 2020, 241:111716.
[97]NEVAVUORI P, NARRA N, LIPPING T. Crop yield prediction with deep convolutional neural networks [J]. Computers & Electronics in Agriculture, 2019, 163:104859.
[98]YANG Q, SHI L, HAN J, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images [J]. Field Crops Research, 2019, 235:142-153.
[99]JIANG H, HU H, ZHONG R, et al. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US corn belt at the county level [J]. Global Change Biology, 2020, 26:1754-1766.
[100]WANG X, HUANG J, FENG Q, et al. Winter wheat yield prediction at county level and uncertainty analysis in main wheat producing regions of China with deep learning approaches [J]. Remote Sensing, 2020, 12:1744.
[101]WOLANIN A, CAMPSVALLS G, MERONI M, et al. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt [J]. Environmental Research Letters, 2020, 15:024019.
[102]XIE Y, HUANG J. Integration of a crop growth model and deep learning methods to improve satellite-based yield estimation of winter wheat in Henan Province, China [J]. Remote Sensing, 2021, 13:4372.
[103]刘保花,陈新平,崔振岭,等. 三大粮食作物产量潜力与产量差研究进展[J]. 中国生态农业学报, 2015, 23(5): 525-534.
[104]王纯枝,宇振荣,辛景峰,等. 基于遥感和作物生长模型的作物产量差估测[J]. 农业工程学报, 2005, 21(7): 84-89.
[105]SCHULTHESS U, TIMSINA J, HERRERA J M, et al. Mapping field-scale yield gaps for maize: An example from Bangladesh [J]. Field Crops Research, 2013, 143(1): 151-156.
[106]POURHADIAN H, KAMKAR B, SOLTANI A, et al. Evaluation of forage maize yield gap using an integrated crop simulation model-satellite imagery method (Case study: Four watershed basins in Golestan Province) [J]. Archives of Agronomy and Soil Science, 2019,65(2):253-268.
[107]LABORTE A G, DE BIE K, SMALING E M A, et al. Rice yields and yield gaps in Southeast Asia: past trends and future outlook [J]. European Journal of Agronomy, 2012, 36: 9-20.
[108]BASSTIAANSSEN W G M, ALI S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan [J]. Agriculture Ecosystems & Environment, 2003, 94: 321-340.
[109]ZHANG S, BAI Y, ZHANG J. Remote sensing-based quantification of the summer maize yield gap induced by suboptimum sowing dates over North China Plain [J]. Remote Sensing, 2021,13(18):3582.
[110]DEHKORDI P A, NEHBANDANI A, HASSANPOUR-BOURKHEILI S, et al. Yield gap analysis using remote sensing and modelling approaches: Wheat in the Northwest of Iran [J]. International Journal of Plant Production, 2020, 14(3): 443-452.
[111]HOCHMAN Z, GOBBETT D, HOLZWORTH D, et al. Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia [J]. Field Crops Research, 2012, 136: 85-96.
[112]MANN M L, WARNER J M. Ethiopian wheat yield and yield gap estimation: A spatially explicit small area integrated data approach [J]. Field Crops Research, 2017, 201: 60-74.
[113]LOW F, BIRADAR C, FLIEMANN E, et al. Assessing gaps in irrigated agricultural productivity through satellite earth observations——a case study of the Fergana Valley, Central Asia [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 59: 118-134.
[114]ZHAO Y, CHEN X, CUI Z, et al. Using satellite remote sensing to understand maize yield gaps in the North China Plain [J]. Field Crops Research, 2015, 183: 31-42.
[115]ZHAO Y, CHEN X P, LOBELL D B. An approach to understanding persistent yield variation-A case study in North China [J]. European Journal of Agronomy, 2016, 77: 10-19.
[116]ZHAO Y, LOBELL D B. Assessing the heterogeneity and persistence of farmers’ maize yield performance across the North China Plain [J]. Field Crops Research, 2017, 205: 55-66.
[117]LIU B, CHEN X, MENG Q, et al. Estimating maize yield potential and yield gap with agro-climatic zones in China——Distinguish irrigated and rainfed conditions [J]. Agricultural & Forest Meteorology, 2017, 239: 108-117.
[118]LOBELL D B, ORTIZ-MONASTERIO J I, FALCON W P. Yield uncertainty at the field scale evaluated with multi-year satellite data [J]. Agricultural Systems, 2007, 92: 76-90.
[119]LIU Z, YANG X, LIN X, et al. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China [J]. Science of the Total Environment, 2016, 541: 756-764.
[120]LOBELL D B, OORTIZ-MONASTERIO J I, LEE A S. Satellite evidence for yield growth opportunities in Northwest India [J]. Field Crops Research,2010, 118: 13-20.
[121]TITTONELL P, SHEPHERD K D, VANLAUWE B, et al. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya——an application of classification and regression tree analysis[J]. Agriculture Ecosystems & Environment, 2008, 123: 137-150.
[122]BEZA E, SILVA J V, KOOISTRA L, et al. Review of yield gap explaining factors and opportunities for alternative data collection approaches [J]. European Journal of Agronomy, 2017, 82: 206-222.
[123]YAN L, ROY D P. Automated crop field extraction from multi-temporal web enabled Landsat data [J]. Remote Sensing of Environment, 2014, 144:42-64.
[124]DE L, OVANDO G, BRESSANINI L, et al. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 531-547.
[125]ZHANG C, WALTERS D, KOVACS J M. Applications of low altitude remote sensing in agriculture upon farmers’ requests——A case study in northeastern Ontario, Canada [J]. PLoS One, 2014, 9 (11): e112894.
[126]CECILE G, VISCARRA R A, MCBRATNEY A B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study [J]. Geoderma, 2008, 146 (3/4): 403-411.
[127]PETROPOULOS G P, IRELAND G, BARRETT B. Surface soil moisture retrievals from remote sensing: current status, products & future trends [J]. Physics and Chemistry of the Earth,2015,83-84:36-56.
[128]JIJI G W, NADAR P. Soil type identification using remotely sensed data for agricultural purpose [J]. Journal of the Institution Engineers, 2016,97(1):405-411.
[129]BAI J, LI J, LI S. Monitoring the plant density of cotton with remotely sensed data[C]//LI D, LIU Y, CHEN Y. International Conference on Computer and Computing Technologies in Agriculture. Berlin, Heidelberg: Springer, 2011:90-101.
[130]JAIN M, MONDAL P, DEFRIES R S, et al. Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors [J]. Remote Sensing of Environment, 2013, 134: 210-223.
[131]DROOGERS P, IMMERZEEL W W, LORITE I J. Estimating actual irrigation application by remotely sensed evapotranspiration observations [J]. Agricultural Water Management, 2010, 97(9): 1351-1359.
[132]GOEL P K, PRASHER S O, LANDRY J A, et al. Potential of airborne hyper-spectral remote sensing to detect nitrogen deficiency and weed infestation in corn [J]. Computers and Electronics in Agriculture, 2003, 38 (2): 99-124.
[133]CAO X, LUO Y, ZHOU Y, et al. Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance [J]. Crop Protection, 2013, 45: 124-131.
[134]ZHENG B, CAMPBELL J B, SERBIN G, et al. Remote sensing of crop residue and tillage practices: present capabilities and future prospects [J]. Soil Tillage Research, 2014, 138: 26-34.
[135]DJURFELDT G, HALL O, JIRSTROM M, et al. Using panel survey and remote sensing data to explain yield gaps for maize in sub-Saharan Africa [J]. Journal of Land Use Science, 2018, 13(3): 1-14.