[1]李恒,南新元,高丙朋,等.一种基于GhostNet的绿色类圆果实识别方法[J].江苏农业学报,2023,(03):724-731.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
 LI Heng,NAN Xin-yuan,GAO Bing-peng,et al.A green round-like fruits identification method based on GhostNet[J].,2023,(03):724-731.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
点击复制

一种基于GhostNet的绿色类圆果实识别方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
724-731
栏目:
农业信息工程
出版日期:
2023-06-30

文章信息/Info

Title:
A green round-like fruits identification method based on GhostNet
作者:
李恒南新元高丙朋马志钢
(新疆大学电气工程学院/西门子实验室,新疆乌鲁木齐830017)
Author(s):
LI HengNAN Xin-yuanGAO Bing-pengMA Zhi-gang
(School of Electrical Engineering, Xinjiang University/Siemens Laboratories, Urumqi 830017, China)
关键词:
目标检测轻量化卷积网络特征融合绿色类圆果实
Keywords:
object detectionlightweight convolutional networksfeature fusiongreen round-like fruits
分类号:
TP391.41
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.013
文献标志码:
A
摘要:
为实现果园实际环境中绿色类圆果实的识别,研究了基于单阶段目标检测网络的绿色类圆果实识别方法。本研究对比4种不同轻量化卷积网络模型,以GhostNet作为本研究网络的主干特征提取网络,将提取到的特征信息利用复杂双向多尺度融合网络进行融合,最后以改进后的YOLO_Head作为预测头,建立适合本研究的目标检测网络。结果表明,在果园背景下本研究构建的目标检测网络对绿色类圆果实的均值平均精度达到96.8%,每张图片检测所用的时间为37 ms,网络内存占用大小为11.8 M,实现了对绿色类圆果实的快速、准确识别,能够为早期果树的产量预估、病虫害识别提供技术支撑。
Abstract:
In order to realize the recognition of green round-like fruits in the actual environment of orchards, the recognition method of green round-like fruits based on one-stage object detection network was studied. In this study, four different lightweight convolutional network models were compared. GhostNet was used as the backbone feature extraction network of this research network. The extracted feature information was fused by bidirectional feature pyramid network(BiFPN). Finally, the improved YOLO_Head was used as the prediction head to establish a target detection network suitable for this study. The experimental results showed that the final detection accuracy of the green round-like fruits in the object detection network constructed in the context of orchard reached 96.8%, the detection speed of a single image reached 37 ms, and the memory occupancy size of the network was 11.8 M, which realized the rapid and accurate identification of green round-like fruits, and could provide technical support for the yield estimation and disease and pest identification of early fruit trees.

参考文献/References:

[1]HE Z L, XIONG J T, LIN R, et al. A method of green litchi recognition in natural environment based on improved LDA classifier[J]. Computers and Electronics in Agriculture, 2017, 140: 159-167.
[2]LINKER R, COHEN O, NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and Electronics in Agriculture, 2012, 81: 45-57.
[3]LI H, LEE W S, WANG K. Identifying blueberry fruit of different growth stages using natural outdoor color images[J]. Computers and Electronics in Agriculture, 2014, 106: 91-101.
[4]LU J, SANG N. Detecting citrus fruits and occlusion recovery under natural illumination conditions[J]. Computers and Electronics in Agriculture, 2015,110: 121-130.
[5]王丹丹,徐越,宋怀波,等. 融合K-means与Ncut算法的无遮挡双重叠苹果目标分割与重建[J]. 农业工程学报,2015,31(10):227-234.
[6]LI H, LEE W S, WANG K. Immature green citrus fruit detection and counting based on fast normalized cross correlation (FNCC) using natural outdoor colour images[J]. Precision Agriculture, 2016,17(6): 678-697.
[7]BANSAL R, LEE W S, SATISH S. Green citrus detection using fast Fourier transform (FFT) leakage[J]. Precision Agriculture, 2013, 14: 59-70.
[8]卢军,胡秀文. 弱光复杂背景下基于MSER和HCA的树上绿色柑橘检测[J] 农业工程学报,2017,33(19):196-201.
[9]马翠花,张学平,李育涛,等. 基于显著性检测与改进Hough变换方法识别未成熟番茄[J].农业工程学报,2016,32(14):219-226.
[10]谢忠红,姬长英,郭小清,等. 基于改进 Hough 变换的类圆果实目标检测[J]. 农业工程学报, 2010, 26(7): 157-162.
[11]LIU X, ZHAO D, JIA W, et al. A detection method for apple fruits based on color and shape features[J]. IEEE Access, 2019, 7: 67923-67933.
[12]李颀,杨军. 基于多分辨率特征融合的葡萄尺寸检测[J] 江苏农业学报, 2022, 38(2): 394-402.
[13]刘芳,刘玉坤,林森,等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6):229-237.
[14]岳有军,孙碧玉,王红君,等. 基于级联卷积神经网络的番茄果实目标检测[J]. 科学技术与工程, 2021, 21(6):2387-2391.
[15]贾伟宽,孟虎,马晓慧,等. 基于优化Transformer网络的绿色果实高效检测模型[J]. 农业工程学报, 2021,37(14):163-170.
[16]GIRSHICK R. Fast R-CNN[C]. Santiago: IEEE, 2015.
[17]REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[18]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] Las Vegas: IEEE, 2016.
[19]REDMON J, FARHADI A. YOLOv3: an incremental improvement [C].Salt Lake City: IEEE, 2018.
[20]LIU W, ANGUELOV D, ERHAD D, et al. SSD: single shotmulti box detector [C] Amsterdam: Springer,2016.
[21]包志龙. 卷积神经网络轻量化技术研究[J] 无线通信技术,2022(1):36-41,47.

相似文献/References:

[1]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
 ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(03):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[2]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
 HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(03):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]

备注/Memo

备注/Memo:
收稿日期:2022-07-12 基金项目:国家自然科学基金项目(61863033) 作者简介:李恒(1997-),男,新疆喀什人,硕士研究生,主要从事计算机视觉研究。(E-mail)1344166355@qq.com 通讯作者:南新元,(E-mail)xynan@xju.edu.cn
更新日期/Last Update: 2023-07-11