参考文献/References:
[1]HE Z L, XIONG J T, LIN R, et al. A method of green litchi recognition in natural environment based on improved LDA classifier[J]. Computers and Electronics in Agriculture, 2017, 140: 159-167.
[2]LINKER R, COHEN O, NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and Electronics in Agriculture, 2012, 81: 45-57.
[3]LI H, LEE W S, WANG K. Identifying blueberry fruit of different growth stages using natural outdoor color images[J]. Computers and Electronics in Agriculture, 2014, 106: 91-101.
[4]LU J, SANG N. Detecting citrus fruits and occlusion recovery under natural illumination conditions[J]. Computers and Electronics in Agriculture, 2015,110: 121-130.
[5]王丹丹,徐越,宋怀波,等. 融合K-means与Ncut算法的无遮挡双重叠苹果目标分割与重建[J]. 农业工程学报,2015,31(10):227-234.
[6]LI H, LEE W S, WANG K. Immature green citrus fruit detection and counting based on fast normalized cross correlation (FNCC) using natural outdoor colour images[J]. Precision Agriculture, 2016,17(6): 678-697.
[7]BANSAL R, LEE W S, SATISH S. Green citrus detection using fast Fourier transform (FFT) leakage[J]. Precision Agriculture, 2013, 14: 59-70.
[8]卢军,胡秀文. 弱光复杂背景下基于MSER和HCA的树上绿色柑橘检测[J] 农业工程学报,2017,33(19):196-201.
[9]马翠花,张学平,李育涛,等. 基于显著性检测与改进Hough变换方法识别未成熟番茄[J].农业工程学报,2016,32(14):219-226.
[10]谢忠红,姬长英,郭小清,等. 基于改进 Hough 变换的类圆果实目标检测[J]. 农业工程学报, 2010, 26(7): 157-162.
[11]LIU X, ZHAO D, JIA W, et al. A detection method for apple fruits based on color and shape features[J]. IEEE Access, 2019, 7: 67923-67933.
[12]李颀,杨军. 基于多分辨率特征融合的葡萄尺寸检测[J] 江苏农业学报, 2022, 38(2): 394-402.
[13]刘芳,刘玉坤,林森,等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6):229-237.
[14]岳有军,孙碧玉,王红君,等. 基于级联卷积神经网络的番茄果实目标检测[J]. 科学技术与工程, 2021, 21(6):2387-2391.
[15]贾伟宽,孟虎,马晓慧,等. 基于优化Transformer网络的绿色果实高效检测模型[J]. 农业工程学报, 2021,37(14):163-170.
[16]GIRSHICK R. Fast R-CNN[C]. Santiago: IEEE, 2015.
[17]REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[18]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] Las Vegas: IEEE, 2016.
[19]REDMON J, FARHADI A. YOLOv3: an incremental improvement [C].Salt Lake City: IEEE, 2018.
[20]LIU W, ANGUELOV D, ERHAD D, et al. SSD: single shotmulti box detector [C] Amsterdam: Springer,2016.
[21]包志龙. 卷积神经网络轻量化技术研究[J] 无线通信技术,2022(1):36-41,47.
相似文献/References:
[1]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(03):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[2]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(03):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]