参考文献/References:
[1]WALTERS T W. Historical overview on domesticated plants in China with special emphasis on the Cucurbitaceae[J]. Economic Botany, 1989, 43(3):297-313.
[2]梁肇均,陈林,王瑞,等. 广东黄瓜育种研究进展[J]. 广东农业科学, 2021, 48(9):22-31.
[3]曹齐卫,杜连达,杨宗辉,等. 黄瓜耐盐种质资源的筛选与评价[J]. 核农学报, 2022, 36(5):865-875.
[4]王斌,朱世江. 阶段降温对冷藏黄瓜耐冷性的诱导作用[J]. 江苏农业学报, 2020, 36(4):1028-1035.
[5]王斌,武春爽,汤冰琳,等. 黄瓜果实CsMYB62克隆及其对CsGR-RBP3表达的调控[J].核农学报, 2022, 36(5):907-917.
[6]王斌,武春爽,何金明,等. CsCAT3克隆与其在冷驯化诱导采后黄瓜耐冷性中的作用初探[J]. 核农学报, 2021, 35(10):2267-2276.
[7]WANG B, ZHU S J. Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers[J]. Postharvest Biology and Technology, 2017, 129:1-8.
[8]张丹丹,屈红霞,段学武,等. 热带果蔬采后冷害研究进展[J]. 热带作物学报, 2020, 41(10):2062-2079.
[9]千春录,朱芹,高姗,等. 外源褪黑素处理对采后水蜜桃冷藏品质及冷害发生的影响[J]. 江苏农业学报, 2020, 36(3):702-708.
[10]许婷婷,张婷婷,姚文思,等. 热处理对低温胁迫下黄瓜活性氧代谢和膜脂组分的影响[J]. 核农学报, 2020, 34(1):85-93.
[11]VALENZUELA J L, MANZANO S, PALMA F, et al. Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions[J]. International Journal of Molecular Sciences, 2017, 18(7):1467.
[12]TATSUMI Y, MAEDA K, MURATA T. Morphological changes in cucumber fruit surfaces associated with chilling injury[J]. Journal of the Japanese Society for Horticultural Science, 1987, 56(2):187-192.
[13]裴倩如,朱本忠,田慧琴,等. 冷激处理对黄瓜低温贮藏中冷害的影响[J]. 北方园艺, 2014, 4(1):127-130.
[14]吴燕,陈杰,高青海. 不同基因型黄瓜幼苗对低温胁迫恢复过程的生理响应[J]. 分子植物育种, 2018, 16(9):2948-2954.
[15]李恒松,朱文莹,彭佳林,等. 黄瓜耐冷性遗传分析与连锁标记筛选[J]. 上海交通大学学报(农业科学版), 2015, 33(1):14-18.
[16]千春录. 黄瓜果实成熟度与耐冷性的关系及其生理机制研究[D]. 杭州:浙江大学, 2012.
[17]WANG B, SHEN F, ZHU S J. Proteomic analysis of differentially accumulated proteins in cucumber (Cucumis sativus) fruit peel in response to pre-storage cold acclimation[J]. Frontiers in Plant Science, 2018, 8:2167.
[18]LYONS J M. Chilling injury in plants[J]. Annual Review of Plant Physiology, 1973, 24: 445-466.
[19]章艳,张长峰. 采后果蔬冷害发生机理及控制研究进展[J]. 保鲜与加工, 2012, 12(4):40-46.
[20]WANG B, WANG G, SHEN F, et al. A glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit[J]. Frontiers in Plant Science, 2018, 9:540.
[21]刘云芬. MeJA和NO诱导冷藏黄瓜抗冷性与抗氧化防御系统的关系[D]. 广州:华南农业大学, 2016.
[22]陈健华,张敏,车贞花,等. 不同贮藏温度及时间对黄瓜果实冷害发生的影响[J]. 食品工业科技, 2012, 33(9):394-397.
[23]SONG C B, WU M B, ZHOU Y, et al. NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance[J]. Horticulture Research, 2022, 9:39.
[24]SALAZAR-SALAS N Y, VALENZUELA-PONCE L, VEGA-GARCIA M O, et al. Protein changes associated with chilling tolerance in tomato fruit with hot water pre-treatment[J]. Postharvest Biology and Technology, 2017, 134:22-30.
[25]GABRIELA L A, GERARDO L J, ODIN V M, et al. Antioxidant enzymatic changes in bell pepper fruit associated with chilling injury tolerance induced by hot water[J]. Journal of Food Biochemistry, 2021, 45(11):e13966.
[26]ZHAO Y Y, SONG C C, BRUMMELL D A, et al. Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content[J]. Food Chemistry, 2021, 358 (2):129867.
[27]ZHANG M X, SHI Y N, LIU Z M, et al. An EjbHLH14-EjHB1-EjPRX12 module is involved in methyl jasmonate alleviation of chilling-induced lignin deposition in loquat fruit[J]. Journal of Experimental Botany, 2021, 73(5):1668-1682.
[28]ZHANG T, CHE F B, ZHANG H, et al. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit[J]. Postharvest Biology and Technology, 2017, 127:88-98.
[29]CABRERA R M, SALTVEIT M E. Physiological response to chilling temperatures of intermittently warmed cucumber fruit[J]. Journal of the American Society for Horticultural Science, 1990, 115(2):256-261.
[30]CAO S F, YANG Z F, CAI Y T, et al. Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury[J]. Food Chemistry, 2011, 127(4):1777-1783.
[31]MAO L C, PANG H Q, WANG G Z, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress[J]. Postharvest Biology and Technology, 2007, 44(1):42-47.
[32]胡均如,张敏. 热处理提高采后果蔬低温贮藏期间活性氧清除能力的机制[J]. 食品与发酵工业, 2021, 47(12):269-276.
[33]LI T T, YUN Z, ZHANG D D, et al. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit[J]. Frontiers in Plant Science, 2015, 6:845.
[34]MARTINEZ C, VALENZUELA J L, JAMILENA M. Genetic and pre- and postharvest factors influencing the content of antioxidants in cucurbit crops[J]. Antioxidants, 2021, 10(6):894.
[35]RU L, JIANG L F, WILLS R B H, et al. Chitosan oligosaccharides induced chilling resistance in cucumber fruit and associated stimulation of antioxidant and HSP gene expression[J]. Scientia Horticulturae, 2020, 264:109187.
[36]SAAD M M. Effect of some postharvest treatments on reducing chilling injury of cucumber fruits during cold storage[J]. Annals of Agricultural Science, Moshtohor, 2019, 57(2):455-468.
[37]PARKIN K L, KUO S J. Chilling-induced lipid degradation in cucumber (Cucumis sativa L. cv Hybrid C) fruit[J]. Plant Physiology, 1989, 90(3):1049-1056.
[38]李朋超,孟陆丽,程谦伟,等. 不同温度对香蕉果实丙二醛、呼吸速率和能量代谢影响[J]. 食品工业, 2021, 42(9):152-157.
[39]袁梦麒,潘永贵. 采后果蔬冷害与能量关系研究进展[J]. 热带农业科学, 2015, 35(8):92-97.
[40]HE X M, LI L, SUN J, et al. Adenylate quantitative method analyzing energy change in postharvest banana (Musa acuminate L.) fruits stored at different temperatures[J]. Scientia Horticulture, 2017, 219:118-124.
[41]MAEDA H A, FERNIE A R. Evolutionary history of plant metabolism[J]. Annual Review of Plant Biology, 2021, 72:185-216.
[42]姜玉,张苗,汤静,等. 冷激结合水杨酸处理对黄瓜果实冷害及能量和脯氨酸代谢的影响[J]. 核农学报, 2021, 35(1):128-137.
[43]姜玉. 冷激结合水杨酸处理减轻黄瓜果实冷害及机理研究[D]. 南京:南京农业大学, 2020.
[44]WANG J D, ZHAO Y Q, MA Z Q, et al. Hydrogen sulfide treatment alleviates chilling injury in cucumber fruit by regulating antioxidant capacity, energy metabolism and proline metabolism[J]. Foods, 2022, 11(18): 2749.
[45]彭燕. 采后黄瓜对机械损伤和低温胁迫的响应机制研究[D]. 杭州:浙江大学, 2012.
[46]MCCOLLUM T G, DOOSTDAR H, MAYER R T, et al. Immersion of cucumber fruit in heated water alters chilling-induced physiological changes[J]. Postharvest Biology and Technology, 1995, 6(1):55-64.
[47]WANG B, WU C S, WANG G, et al. Transcriptomic analysis reveals a role of phenylpropanoid pathway in the enhancement of chilling tolerance by pre-storage cold acclimation in cucumber fruit[J]. Scientia Horticulturae, 2021, 288:110282.
[48]李倩,沈春生,林启昉,等. 采后香蕉果实冷害发生与控制技术研究进展[J]. 果树学报, 2021, 38(5):817-827.
[49]GUO X Y, LIU D F, CHONG K. Cold signaling in plants: insights into mechanisms and regulation[J]. Journal of Integrative Plant Biology, 2018, 60(9):745-756.
[50]张海英,王有年,韩涛,等. 外源甜菜碱对黄瓜果实冷藏期间延缓冷害的影响[J]. 中国农业科学, 2008, 41(8):2407-2412.
[51]JAHAN M S, SHU S, WANG Y, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biology, 2019, 19(1):414.
[52]MADEBO M P, LUO S M, WANG L, et al. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit[J]. Journal of Integrative Agriculture, 2021, 20(11): 3060-3074.
[53]JAMET E, DUNAND C. Plant cell wall proteins and development[J]. International Journal of Molecular Sciences, 2020, 21(8):2731.
[54]张淑杰,胡婷婷,刘红开,等. 果蔬采后硬度变化研究进展[J]. 保鲜与加工, 2018, 18(4):141-146.
[55]沈丽雯. 热激处理对黄瓜品质影响及诱导抗冷性机理的研究[D]. 雅安:四川农业大学, 2015.
[56]李佳乐,张敏,胡均如,等. 梯度热水处理减轻贮后黄瓜冷害与细胞壁代谢的关系[J]. 食品与发酵工业, 2022, 48(3):233-240.
[57]沈丽雯,刘娟,董红敏,等. 热激处理减轻黄瓜冷害与细胞壁代谢的关系[J]. 食品工业科技, 2015, 36(23): 329-332.
[58]MERCER M D, SMITTLE D A. Storage atmospheres influence chilling injury and chilling injury-induced changes in cell wall polysaccharides of cucumber[J]. Journal of the American Society for Horticultural Science, 1992, 117(6):930-933.
[59]CAO S, BIAN K, SHI L, et al. Role of melatonin in cell-wall disassembly and chilling tolerance in cold-stored peach fruit[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22):5663-5670.
[60]ZHAO Y Y, TANG J X, SONG C C, et al. Nitric oxide alleviates chilling injury by regulating the metabolism of lipid and cell wall in cold-storage peach fruit[J]. Plant Physiology and Biochemistry, 2021, 169:63-69.
[61]李佩艳,尹飞,党东阳,等. 草酸处理对桂七芒果冷害及细胞壁代谢的影响[J]. 核农学报, 2020, 34(12):2742-2748.
[62]杨文慧,黄玉咪,徐超,等. 氯化钙和草酸处理减轻香蕉果实贮藏冷害[J]. 中国南方果树, 2020, 49(5):78-82.
[63]MAZUMDER M N N, MISRAN A, DING P, et al. Effect of harvesting stages and calcium chloride application on postharvest quality of tomato fruits[J]. Coatings, 2021, 11(12):1445.
[64]YAN R, XU Q H, DONG J X, et al. Effects of exogenous melatonin on ripening and decay incidence in plums (Prunus salicina L. cv. Taoxingli) during storage at room temperature[J]. Scientia Horticulturae, 2022, 292:110655.
[65]EUM H L, KIM H B, SANG B C, et al. Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages[J]. European Food Research and Technology, 2009, 228(3):331-338.
[66]赵昱瑄,张敏,姜雪,等. 短时热处理对低温逆境下黄瓜不同部位的冷害及活性氧代谢影响[J]. 食品与发酵工业, 2020, 46(7):180-187.
[67]AGHDAM M S, BODBODAK S. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables[J]. Food and Bioprocess Technology, 2014, 7:37-53.
[68]郝佳诗,王愈,尹建云,等. 短波紫外线结合热处理对黄瓜冷害及抗氧化代谢的影响[J]. 浙江农林大学学报, 2018, 35(3):476-482.
[69]郑鄢燕,代晓霞,生吉萍,等. 热处理与内源H2O2对黄瓜抗冷性和抗氧化酶活性的影响[J]. 食品科学, 2012, 33(22):314-318.
[70]赵昱瑄,张敏,姜雪,等. 不同贮藏温度结合热处理对黄瓜品质及生理生化指标的影响[J]. 安徽农业大学学报, 2020, 47(6):1023-1030.
[71]史君彦,王云香,周念念,等. 低温预贮对黄瓜耐冷性的影响[J]. 食品工业, 2019, 40(12):5-8.
[72]WANG B, WANG G, ZHU S J. DNA damage inducible protein 1 is involved in cold adaption of harvested cucumber fruit[J]. Frontiers in Plant Science, 2020, 10:1723.
[73]TOMOHISA H. Effects of pre- and intermittent warming of cucumber fruits on chilling injury, titratable acidity, sugar and ascorbic acid contents[J]. Science Reports of Faculty of Agriculture Kobe University, 1987, 17(2):175-180.
[74]ZHANG N, YANG Z, CHEN A G, et al. Effects of intermittent heat treatment on sensory quality and antioxidant enzymes of cucumber[J]. Scientia Horticulturae, 2014, 170:39-44.
[75]丹阳,李里特,张刚. 短时高压静电场处理对黄瓜采后生理的影响[J]. 食品科学, 2005, 26(10):240-242.
[76]贾雯茹. 高湿贮藏减轻黄瓜果实冷害的作用研究[D]. 南京: 南京农业大学, 2019.
[77]代慧,何晓梅,段志蓉,等. 泡沫箱包装的逐渐降温功能对黄瓜冷害的抑制[J]. 食品与发酵工业, 2021, 47(18):77-85.
[78]KAHRAMANOLU B, USANMAZ S. Improving postharvest storage quality of cucumber fruit by modified atmosphere packaging and biomaterials[J]. Hortscience, 2019, 54(11):2005-2014.
[79]王锋,赵旗峰,张晓萍,等. 壳聚糖-纳米ZnO-褪黑素复合涂膜对黄瓜冷害的影响及其机制研究[J]. 食品与发酵工业, 2022, 48(9):201-207.
[80]梁芸志,季丽丽,陈存坤,等. 臭氧处理对采后黄瓜贮藏品质的影响[J]. 食品安全质量检测学报, 2017, 8(5):1559-1564.
[81]LIU Y F, YANG X X, ZHU S J, et al. Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation[J]. Postharvest Biology and Technology, 2016, 119:77-83.
[82]齐海萍,刘程惠,田密霞,等. 茉莉酸甲酯在采后果蔬品质控制中的应用[J]. 食品安全质量检测学报, 2015, 6(7):2415-2419.
[83]辛丹丹,司金金,张若曦,等. 外源褪黑素处理对黄瓜采后冷藏期抗冷性的影响[J]. 西北农林科技大学学报, 2018, 46(9):108-114.
[84]CHEN B X, YANG H Q. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status[J]. Journal of the Science of Food and Agriculture, 2013, 93(8):1915-1921.
[85]YANG H Q, WU F H, CHENG J Y. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response[J]. Food Chemistry, 2011, 127(3):1237-1242.
[86]王云香,王清,高丽朴,等. 外源NO处理对黄瓜采后生理特性的影响[J]. 北方园艺, 2018(18):109-113.
[87]赵习姮,李进才. H2O2处理对采后黄瓜抗冷性的影响[J]. 天津农业科学, 2011, 17(4):1-4.
[88]崔文玉,李昶,许新月,等. H2S的信号分子作用及其对果蔬采后生理代谢的调控研究进展[J]. 保鲜与加工, 2020, 20(4):226-229.
[89]张敏,解越. 采后果蔬低温贮藏冷害研究进展[J]. 食品与生物技术学报, 2016, 35(1):1-11.
[90]魏宝东,赵银玲,白冰,等. 采前喷钙对黄瓜采后冷藏品质的影响[J]. 食品科学, 2015, 36(18):225-230.
[91]HASAN M U, REHMAN R, MALIK A U, et al. Pre-storage application of L-arginine alleviates chilling injury and maintains postharvest quality of cucumber (Cucumis sativus) [J]. Journal of Horticultural Science and Technology, 2019, 2(4):102-108.
[92]李昺胐,郑秋丽,徐冬颖,等. 外源精胺处理对采后黄瓜品质的影响[J]. 食品工业科技, 2018, 39(14):248-251.
[93]MALEKZADEH P, KHOSRAVI-NEJAD F, HATAMNIA A A, et al. Impact of postharvest exogenous γ-aminobutyric acid treatment on cucumber fruit in response to chilling tolerance[J]. Physiology and Molecular Biology of Plants, 2017, 23(4):827-836.
[94]DING Y L, SHI Y T, YANG S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4):544-564.
[95]ZHENG S, SU M, WANG L, et al. Small signaling molecules in plant response to cold stress[J]. Journal of Plant Physiology, 2021, 266:153534.
[96]YUAN P, YANG T, POOVAIAH B W. Calcium signaling-mediated plant response to cold stress[J]. International Journal of Molecular Sciences, 2018, 19(12):3896.
[97]DIAO P F, CHEN C, ZHANG Y Z, et al. The role of NAC transcription factor in plant cold response[J]. Plant Signaling and Behavior, 2020, 15(9):1785668.
[98]SHI Y T. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7):623-637.
[99]BAILLO E H, KIMOTHO R N, ZHANG Z, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10(10):771.
[100]LIU X W, LIU B, XUE S D, et al. Cucumber (Cucumis sativus L.) nitric oxide synthase associated gene1 (CsNOA1) plays a role in chilling stress[J]. Frontiers in Plant Science, 2016, 7:1652.
[101]GUPTA N, RATHORE M, GOYARY D, et al. Marker-free transgenic cucumber expressing Arabidopsis CBF1 gene confers chilling stress tolerance[J]. Biologia Plantarum, 2012, 56(1):57-63.
[102]LIU L Y, DUAN L S, ZHANG J C, et al. Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance[J]. Scientia Horticulturae, 2010, 124(1):29-33.
[103]SANMARTIN M, DROGOUDI P D, LYONS T, et al. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone[J]. Planta, 2003, 216:918-928.
[104]DE KONING R, KIEKENS R, TOILI M E M, et al. Identification and expression analysis of the genes involved in the raffinose family oligosaccharides pathway of Phaseolus vulgaris and Glycine max[J]. Plants, 2021, 10(7):1465.
[105]DAI H B, ZHU Z H, WANG Z G, et al. Galactinol synthase 1 improves cucumber performance under cold stress by enhancing assimilate translocation[J]. Horticulture Research, 2022, 9:uhab063.
[106]MA S, LYU J G, LI X, et al. Galactinol synthase gene 4 (CsGolS4) increases cold and drought tolerance in Cucumis sativus L. by inducing RFO accumulation and ROS scavenging[J]. Environmental and Experimental Botany, 2021, 185:104406.
[107]王斌,黄泳谚,易景怡,等. 黄瓜GR-RBP3启动子克隆及低温对其活性的诱导[J]. 山东农业科学, 2022, 54(7):15-23.
[108]陈珊,王晓晨,邝健飞,等. 黄瓜果实耐冷性与CsHSFs基因表达关系的研究[J]. 华南农业大学学报, 2015, 36(5):85-91.
[109]赵普莹. ERFs调控黄瓜果实贮藏冷害及其与膜脂代谢关系研究[D]. 广州:华南农业大学, 2018.
[110]MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221.
[111]JIN Y N, CUI Z H, MA K, et al. Characterization of ZmCOLD1, novel GPCR-Type G protein gene involved in cold stress from Zea mays L. and the evolution analysis with those from other species[J]. Physiology and Molecular Biology of Plants, 2021, 27(3): 619-632.
[112]ANUNANTHINI P, MANOJ V M, PADMANABHAN T S, et al. In silico characterisation and functional validation of chilling tolerant divergence 1 (COLD1) gene in monocots during abiotic stress[J]. Functional Plant Biology, 2019, 46(6):524-532.
[113]武春爽,程榕欣,黄泳谚,等. 黄瓜CsCOLD1基因的特征及低温下表达变化[J]. 江苏农业科学,2022,50(24):43-50.
[114]WANG Z Y, ZHOU Z Y, WANG L M, et al. The CsHEC1-CsOVATE module contributes to fruit neck length variation via modulating auxin biosynthesis in cucumber[J]. Proceedings of the National Academy of Sciences, 2022, 9(39):e2209717119