[1]张洛,王正阳,蒋建东,等.农业领域合成生物学研究进展分析[J].江苏农业学报,2023,(02):547-556.[doi:doi:10.3969/j.issn.1000-4440.2023.02.029]
 ZHANG Luo,WANG Zheng-yang,JIANG Jian-dong,et al.Analysis on research progress of synthetic biology in agricultural field[J].,2023,(02):547-556.[doi:doi:10.3969/j.issn.1000-4440.2023.02.029]
点击复制

农业领域合成生物学研究进展分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
547-556
栏目:
农业经济·农业信息
出版日期:
2023-04-30

文章信息/Info

Title:
Analysis on research progress of synthetic biology in agricultural field
作者:
张洛王正阳蒋建东陈俐
(南京农业大学,江苏南京210095)
Author(s):
ZHANG LuoWANG Zheng-yangJIANG Jian-dongCHEN Li
(Nanjing Agricultural University, Nanjing 210095, China)
关键词:
农业合成生物学Scopus数据库
Keywords:
agriculturesynthetic biologyScopus database
分类号:
S182
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.029
文献标志码:
A
摘要:
本文重点以2016-2021年Scopus数据库收录的农业领域合成生物学相关文献为样本,运用文献计量学分析方法,旨在揭示该领域的研究现状及发展趋势,分析该领域的优势研究机构与平台、地域分布及国内外有关合成生物学的发展战略。结果表明,农业领域合成生物学学科分布广,相关研究较多且学术产出质量较高、关注度高,有很大的发展潜力与空间,欧美国家,特别是美国在农业领域合成生物学占据绝对主导地位;从各国农业领域合成生物学的发展情况看,政策引导和平台建设在促进农业领域合成生物学的研究中发挥着积极作用;模式生物及方法、食品、土壤固碳、海洋生物是农业领域合成生物学研究的热点,研究热词主要分布在模式动植物、微生物、大田作物方面。综合分析可知,合成生物学已经进入农业领域并得到蓬勃发展,未来要更加关注元基因组及潜在功能的研究,助力种植业和养殖业减排、可再生能源替代和农业土壤固碳等。
Abstract:
This paper mainly took the literature related to synthetic biology in agriculture included in Scopus from 2016 to 2021 as a sample, and bibliometric analysis method was used to reveal the current status and development tendency of research in this field, and to explore the superior research institutions, platforms, geographical distribution and development strategies related to synthetic biology at home and abroad. The results showed that agricultural synthetic biology disciplines were widely distributed, with many related studies, high-quality academic output and high attention, and had great potential and space for development. European and American countries, especially the United States, occupied an absolute dominant position in the field of agricultural synthetic biology. From the development of agricultural synthetic biology in various countries, policy guidance and platform construction played an active role in promoting agricultural synthetic biology research. Model organisms, methods, food, soil carbon sequestration, and marine biology were the hot areas of synthetic biology research in agriculture, and research buzzwords were mainly distributed in model animals and plants, microorganisms, and field crops. Synthetic biology has entered agricultural research and will influence the development of agricultural research to a greater extent in the future. Therefore, researchers in the field of agriculture should actively pay attention to the development of synthetic biology technology, strengthen cooperation and communication, and build relevant platforms to promote the development of synthetic biology in agriculture.

参考文献/References:

[1]吴杰,赵乔. 合成生物学在现代农业中的应用与前景[J]. 植物生理学报, 2020, 56(11): 2308-2316.
[2]PAPANATSIOU M, PETERSEN J, HENDERSON L, et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth[J]. Science, 2019, 363(6434): 1456-1459.
[3]WANG K H, DE LA TORRE D, ROBERTSON W E, et al. Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly[J]. Science, 2019, 365(6456):922-926.
[4]ERB T J, ZARZYCKI J. Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation[J]. Current Opinion in Chemical Biology, 2016, 34:72-79.
[5]ATKINSON N, FEIKE D, MACKINDER L C M, et al. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components[J]. Plant Biotechnology Journal, 2016, 14(5):1302-1315.
[6]LIU Y F,DONG X M, WANG B. Food synthetic biology-driven protein supply transition: from animal-derived production to microbial fermentation[J].Chinese Journal of Chemical Engineering, 2021(2):29-36.
[7]AIKING H. Future protein supply[J]. Trends in Food Science & Technology, 2011, 22(2/3):112-120.
[8]CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562):1523-1527.
[9]张大璐,吴函蓉. 英国生物技术发展现状浅析[J]. 中国生物工程杂志, 2020, 40(6): 113-115.
[10]崔金明,张炳照,马迎飞,等. 合成生物学研究的工程化平台[J]. 中国科学院院刊, 2018, 33(11): 1249-1257.
[11]BALK J, VON WIRN N, THOMINE S. The iron will of the research community: advances in iron nutrition and interactions in lockdown times[J]. Journal of Experimental Botany, 2021, 72(6):2011-2013.
[12]佚名. 中国科学院合成生物学重点实验室[J]. 中国科学院院刊, 2018, 33(11): 1258-1259.
[13]李子文,刘言,吕梦洋,等. 基于CRISPR-Cas9的拟南芥基因编辑后代鉴定技术的优化[J]. 河南农业科学, 2021, 50(4): 17-21.
[14]ZHANG Y H, QIN W, LU X C, et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system[J]. Nat Commun, 2017(8): 118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524635/.
[15]ALESTRM P, D’ANGELO L, MIDTLYNG P J, et al. Zebrafish: housing and husbandry recommendations[J]. Laboratory Animals, 2020, 54(3):213-224. DOI:10.1177/0023677219869037.
[16]DUAN J, LI R Q, CHENG D J, et al. SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology[J]. Nucleic Acids Research, 2010, 38(suppl_1):D453-D456.
[17]李洋,申晓林,孙新晓,等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120.
[18]PONTRELLI S, CHIU T Y, LAN E I, et al. Escherichia coli asa host for metabolic engineering[J]. Metabolic Engineering, 2018, 50: 16-46.
[19]LI Y F, YAN F Q, WU H Y, et al. Multiple-step chromosomal integration of divided segments from a large DNA fragment via CRISPR/Cas9 in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(1): 81-90.
[20]WANG W Y, LI Y W B, WANG Y Q, et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology[J]. Biotechnology Advances, 2018, 36(8): 2129-2137.
[21]ROBERT M, VAN R H M, MELANIE W, et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae[J]. Fems Yeast Research, 2015(2):2.
[22]XIE Z X, LI B Z, MITCHELL L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704.
[23]SHAO Y Y, LU N, CAI C, et al. A single circular chromosome yeast[J]. Cell Research, 2019, 29(1): 87-89.
[24]VOIGT C A. Synthetic biology 2020-2030: six commercially-available products that are changing our world[J]. Nature Communications, 2020, 11(1): 6379.
[25]WALTZ E. CRISPR-edited crops free to enter market, skip regulation[J]. Nature Biotechnology, 2016, 34(6):582.
[26]LI M R, LI X X, ZHOU Z J, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2016, 7:377.
[27]LYU Z Y, ZHANG F Y, PAN Q F, et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining highyield artemisinin[J]. Plant and Cell Physiology, 2016, 57(3):588-602.
[28]SHI J R, GAO H R, WANG H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnology Journal, 2017, 15(2): 207-216.
[29]OSAKABE Y, WATANABE T, SUGANO S S, et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants[J]. Scientific Reports, 2016, 6:26685.
[30]DAPKEKAR A,DESHPANDE P, OAK M D, et al. Zinc use efficiency is enhanced in wheat through nanofertilization[J]. Scientific Reports, 2018, 8: 6832.
[31]LIAN J P, ZHAO L F, WU J N, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.)[J]. Chemosphere, 2020,239:124794.
[32]WANG Y P, CHENG X, SHAN Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9):947-951.
[33]NEKRASOV V, WANG C M, WIN J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Scientific Reports, 2017, 7:482.
[34]CLASEN B M, STODDARD T J, LUO S, et al. Improving cold storage and processing traits in potato through targeted gene knockout[J]. Plant Biotechnology Journal, 2016,14: 169-176.
[35]王璞玥,唐鸿志,吴震州,等. “合成生物学”研究前沿与发展趋势[J]. 中国科学基金, 2018, 32(5): 545-551.
[36]SHI H, LIN Y L, LAI Z X, et al. Research progress on CRISPR/Cas9-mediated genome editing technique in plants[J]. Chinese Journal of Applied and Environmental Biology,2018,24(3): 640-650.
[37]CHEN K L, WANG Y P, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1):667-697.
[38]ISHIDA Y, HIEI Y, KOMARI T. Tissue culture protocols for gene transfer and editing in maize (Zea mays L.)[J]. Plant Biotechnology,2020,37 (2):121-128.
[39]TIAN Y S, LIU X B, FAN C X, et al. Enhancement of tobacco (Nicotiana tabacum L.) seed lipid content for biodiesel production by CRISPR-Cas9-mediated knockout of NtAn1[J]. Frontiers in Plant Science, 2021, 11:599474.
[40]PATIAL M, PAL D, THAKUR A, et al. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview[J]. Proceedings of the National Academy of Sciences, India Section B, 2019, 89(1): 27-41.
[41]WATSON A, GHOSH S, WILLIAMs M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nature Plants, 2018, 4: 23-29.
[42]杨春,邓绍平. 元基因组研究进展[J]. 实用医院临床杂志, 2015, 12(6): 151-153.
[43]陈俐,张洛,王正阳,等. 基于SciVal的基因编辑技术研究态势分析[J]. 南京农业大学学报, 2020, 43(6): 1162-1172.
[44]MA S Y, LIU Y, LIU Y Y, et al. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites[J]. Insect Biochemistry and Molecular Biology, 2017,83:13-20.
[45]THIND A K, WICKER T, IMKOV H, et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly[J]. Nature Biotechnology, 2017, 35(8):793-796.

相似文献/References:

[1]顾军,于堃,张腾,等.基于信息技术的财政支农项目监管方法[J].江苏农业学报,2015,(01):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
 GU Jun,YU Kun,ZHANG Teng,et al.Supervision of goverment finance-supported agricultural projects using information technology in Jiangsu province[J].,2015,(02):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
[2]张学智,王继岩,张藤丽,等.中国农业系统N2O排放量评估及低碳措施[J].江苏农业学报,2021,(05):1215.[doi:doi:10.3969/j.issn.1000-4440.2021.05.017]
 ZHANG Xue-zhi,WANG Ji-yan,ZHANG Teng-li,et al.Assessment of nitrous oxide emissions from Chinese agricultural system and low-carbon measures[J].,2021,(02):1215.[doi:doi:10.3969/j.issn.1000-4440.2021.05.017]

备注/Memo

备注/Memo:
收稿日期:2022-05-17 作者简介:张洛(1987-),女,重庆人,主要从事科研管理及知识产权研究。(E-mail)zhangluo@njau.edu.cn 通讯作者:陈俐,(E-mail)chenli@njau.edu.cn
更新日期/Last Update: 2023-05-12