参考文献/References:
[1]吴杰,赵乔. 合成生物学在现代农业中的应用与前景[J]. 植物生理学报, 2020, 56(11): 2308-2316.
[2]PAPANATSIOU M, PETERSEN J, HENDERSON L, et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth[J]. Science, 2019, 363(6434): 1456-1459.
[3]WANG K H, DE LA TORRE D, ROBERTSON W E, et al. Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly[J]. Science, 2019, 365(6456):922-926.
[4]ERB T J, ZARZYCKI J. Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation[J]. Current Opinion in Chemical Biology, 2016, 34:72-79.
[5]ATKINSON N, FEIKE D, MACKINDER L C M, et al. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components[J]. Plant Biotechnology Journal, 2016, 14(5):1302-1315.
[6]LIU Y F,DONG X M, WANG B. Food synthetic biology-driven protein supply transition: from animal-derived production to microbial fermentation[J].Chinese Journal of Chemical Engineering, 2021(2):29-36.
[7]AIKING H. Future protein supply[J]. Trends in Food Science & Technology, 2011, 22(2/3):112-120.
[8]CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562):1523-1527.
[9]张大璐,吴函蓉. 英国生物技术发展现状浅析[J]. 中国生物工程杂志, 2020, 40(6): 113-115.
[10]崔金明,张炳照,马迎飞,等. 合成生物学研究的工程化平台[J]. 中国科学院院刊, 2018, 33(11): 1249-1257.
[11]BALK J, VON WIRN N, THOMINE S. The iron will of the research community: advances in iron nutrition and interactions in lockdown times[J]. Journal of Experimental Botany, 2021, 72(6):2011-2013.
[12]佚名. 中国科学院合成生物学重点实验室[J]. 中国科学院院刊, 2018, 33(11): 1258-1259.
[13]李子文,刘言,吕梦洋,等. 基于CRISPR-Cas9的拟南芥基因编辑后代鉴定技术的优化[J]. 河南农业科学, 2021, 50(4): 17-21.
[14]ZHANG Y H, QIN W, LU X C, et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system[J]. Nat Commun, 2017(8): 118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524635/.
[15]ALESTRM P, D’ANGELO L, MIDTLYNG P J, et al. Zebrafish: housing and husbandry recommendations[J]. Laboratory Animals, 2020, 54(3):213-224. DOI:10.1177/0023677219869037.
[16]DUAN J, LI R Q, CHENG D J, et al. SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology[J]. Nucleic Acids Research, 2010, 38(suppl_1):D453-D456.
[17]李洋,申晓林,孙新晓,等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120.
[18]PONTRELLI S, CHIU T Y, LAN E I, et al. Escherichia coli asa host for metabolic engineering[J]. Metabolic Engineering, 2018, 50: 16-46.
[19]LI Y F, YAN F Q, WU H Y, et al. Multiple-step chromosomal integration of divided segments from a large DNA fragment via CRISPR/Cas9 in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(1): 81-90.
[20]WANG W Y, LI Y W B, WANG Y Q, et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology[J]. Biotechnology Advances, 2018, 36(8): 2129-2137.
[21]ROBERT M, VAN R H M, MELANIE W, et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae[J]. Fems Yeast Research, 2015(2):2.
[22]XIE Z X, LI B Z, MITCHELL L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704.
[23]SHAO Y Y, LU N, CAI C, et al. A single circular chromosome yeast[J]. Cell Research, 2019, 29(1): 87-89.
[24]VOIGT C A. Synthetic biology 2020-2030: six commercially-available products that are changing our world[J]. Nature Communications, 2020, 11(1): 6379.
[25]WALTZ E. CRISPR-edited crops free to enter market, skip regulation[J]. Nature Biotechnology, 2016, 34(6):582.
[26]LI M R, LI X X, ZHOU Z J, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2016, 7:377.
[27]LYU Z Y, ZHANG F Y, PAN Q F, et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining highyield artemisinin[J]. Plant and Cell Physiology, 2016, 57(3):588-602.
[28]SHI J R, GAO H R, WANG H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnology Journal, 2017, 15(2): 207-216.
[29]OSAKABE Y, WATANABE T, SUGANO S S, et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants[J]. Scientific Reports, 2016, 6:26685.
[30]DAPKEKAR A,DESHPANDE P, OAK M D, et al. Zinc use efficiency is enhanced in wheat through nanofertilization[J]. Scientific Reports, 2018, 8: 6832.
[31]LIAN J P, ZHAO L F, WU J N, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.)[J]. Chemosphere, 2020,239:124794.
[32]WANG Y P, CHENG X, SHAN Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9):947-951.
[33]NEKRASOV V, WANG C M, WIN J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Scientific Reports, 2017, 7:482.
[34]CLASEN B M, STODDARD T J, LUO S, et al. Improving cold storage and processing traits in potato through targeted gene knockout[J]. Plant Biotechnology Journal, 2016,14: 169-176.
[35]王璞玥,唐鸿志,吴震州,等. “合成生物学”研究前沿与发展趋势[J]. 中国科学基金, 2018, 32(5): 545-551.
[36]SHI H, LIN Y L, LAI Z X, et al. Research progress on CRISPR/Cas9-mediated genome editing technique in plants[J]. Chinese Journal of Applied and Environmental Biology,2018,24(3): 640-650.
[37]CHEN K L, WANG Y P, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1):667-697.
[38]ISHIDA Y, HIEI Y, KOMARI T. Tissue culture protocols for gene transfer and editing in maize (Zea mays L.)[J]. Plant Biotechnology,2020,37 (2):121-128.
[39]TIAN Y S, LIU X B, FAN C X, et al. Enhancement of tobacco (Nicotiana tabacum L.) seed lipid content for biodiesel production by CRISPR-Cas9-mediated knockout of NtAn1[J]. Frontiers in Plant Science, 2021, 11:599474.
[40]PATIAL M, PAL D, THAKUR A, et al. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview[J]. Proceedings of the National Academy of Sciences, India Section B, 2019, 89(1): 27-41.
[41]WATSON A, GHOSH S, WILLIAMs M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nature Plants, 2018, 4: 23-29.
[42]杨春,邓绍平. 元基因组研究进展[J]. 实用医院临床杂志, 2015, 12(6): 151-153.
[43]陈俐,张洛,王正阳,等. 基于SciVal的基因编辑技术研究态势分析[J]. 南京农业大学学报, 2020, 43(6): 1162-1172.
[44]MA S Y, LIU Y, LIU Y Y, et al. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites[J]. Insect Biochemistry and Molecular Biology, 2017,83:13-20.
[45]THIND A K, WICKER T, IMKOV H, et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly[J]. Nature Biotechnology, 2017, 35(8):793-796.