[1]刘邮洲,沈佳慧,乔俊卿,等.芽孢杆菌嗜铁素研究进展[J].江苏农业学报,2023,(01):266-276.[doi:doi:10.3969/j.issn.1000-4440.2023.01.030]
 LIU You-zhou,SHEN Jia-hui,QIAO Jun-qing,et al.Research progress of siderophore produced by Bacillus spp.[J].,2023,(01):266-276.[doi:doi:10.3969/j.issn.1000-4440.2023.01.030]
点击复制

芽孢杆菌嗜铁素研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
266-276
栏目:
综述
出版日期:
2023-02-28

文章信息/Info

Title:
Research progress of siderophore produced by Bacillus spp.
作者:
刘邮洲沈佳慧乔俊卿左杨刘永锋
(江苏省农业科学院植物保护研究所,江苏南京210014)
Author(s):
LIU You-zhouSHEN Jia-huiQIAO Jun-qingZUO YangLIU Yong-feng
(Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
芽孢杆菌嗜铁素嗜铁素药物耦合物
Keywords:
Bacillus spp.siderophoresiderophore-drug conjugate
分类号:
S482.3+9
DOI:
doi:10.3969/j.issn.1000-4440.2023.01.030
文献标志码:
A
摘要:
嗜铁素(Siderophore)是微生物为适应自然界高氧低铁环境,产生的一类能特异性螯合三价铁离子的小分子化合物。绝大多数细菌和真菌都能通过非核糖体肽合成酶途径(NRPS)或非依赖NRPS途径(NIS)合成一种或几种嗜铁素。芽孢杆菌是目前研究与生产上应用最多的一类生防细菌,但芽孢杆菌嗜铁素的生防贡献国内外鲜有报道。本文对芽孢杆菌嗜铁素的种类、合成与调控机制、功能与应用(包括竞争作用、抗生作用、毒力作用、环境污染修复作用以及在医药研发上的应用等)进行了系统概述,为解析自然界中芽孢杆菌具有广谱抗菌活性的生防机制提供理论依据,同时对研发嗜铁素和药物偶联的新型靶向农药具有重要指导意义。
Abstract:
Iron is an essential element for the growth of almost all living microorganisms because it acts as a cofactor in enzymatic processes, oxygen metabolism, electron transfer, and RNA syntheses. Although iron is abundant in the earth’s crust, it exists primarily as insoluble hydroxides in aerobic aqueous solution, making its acquisition difficult for microorganisms. To overcome this challenge, many microorganisms secrete low molecular weight iron chelators called siderophores. Most bacteria and fungi can synthesize one or more siderophores through nonribosomal peptide synthetases (NRPS) pathway or NRPS-independent siderophore (NIS) pathway. Bacillus spp. is considered the most successful biological control agent. However, there are few reports on the research of siderophore produced by Bacillus spp. In this paper, the types, biosynthesis and regulation mechanisms, functions and applications of siderophore produced by Bacillus spp. were systematically summarized, including competition, antibiosis, virulence, environmental pollution remediation and pharmaceutical research and development. Our results will reveal the new biological control mechanism of Bacillus spp. based on siderophore, which will help to expand the biocontrol application of siderophore and develop new target biological pesticides.

参考文献/References:

[1]SCHWYN B, NEILANDS J B. Universal chemical assay for the detection and determination of siderophores [J]. Analytical Biochemistry, 1987, 160(1): 47-56.
[2]AHMED E, HOLMSTROM S J M. Siderophores in environmental research: roles and applications [J]. Microbial Biotechnology, 2014, 7(3): 196-208.
[3]SCHALK I J. Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the Pyoverdine pathway [J]. Journal of Inorganic Biochemistry, 2008, 102(5): 1159-1169.
[4]RAYMOND K N, DERTZ E A, KIM S S. Enterobactin: An archetype for microbial iron transport [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7): 3584-3588.
[5]GUERINOT M L. Microbial iron transport [J]. Annual Review of Microbial, 1994, 48: 743-772.
[6]DE SERRANO L O, CAMPER A K, RICHARDS A M. An overview of siderophores for iron acquisition in microorganisms living in the extreme [J]. BioMetals, 2016, 29(4): 551-571.
[7]CRICHTON R R, CHARLOTEAUX-WAUTERS M. Iron transport and storage [J]. European Journal of Biochemistry, 1987, 164(3): 485-506.
[8]DIMOPOULOU A, THEOLOGIDIS L, BENAKI D, et al. Direct antibiotic activity of Bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600 [J]. mSphere, 2021, 6(4): e00376-21.
[9]CORNELIS P, MATTHIJS S. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only Pyoverdines [J]. Environmental Microbiology, 2002, 4(12): 787-798.
[10]BOUKHALFA H, CRUMBLISS A L. Chemical aspects of siderophore mediated iron transport [J]. BioMetals, 2002, 15(4): 325-339.
[11]董子阳,胡佳杰,胡宝兰. 微生物铁载体转运调控机制及其在环境污染修复中的应用[J]. 生物工程学报, 2019, 35(11): 2189-2200.
[12]BAAKZA A, VALA A K, DAVE B P, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats [J]. Journal of Experimental Marine Biology and Ecology, 2004, 311(1): 1-9.
[13]BERTI A D, THOMAS M G. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a [J]. Journal of Bacteriology, 2009, 191(14): 4594-4604.
[14]WILSON M K, ABERGEL R J, RAYMOND K N, et al. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis [J]. Biochemical and Biophysical Research Communications, 2006, 348(1): 320-325.
[15]HOTTA K, KIM C Y, FOX D T, et al. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains [J]. Microbiology, 2010, 156(7): 1918-1925.
[16]MAY J J, WENDRICH T M, MARAHIEL M A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester Bacillibactin [J]. The Journal of Biological Chemistry, 2001, 276(10): 7209-7217.
[17]WILSON B R, BOGDAN A R, MIYAZAWA M, et al. Siderophores in iron metabolism: from mechanism to therapy potential [J]. Trends in Molecular Medicine, 2016, 22(12): 1077-1090.
[18]孙萌. 铁载体高产菌株的ARTP选育及其铁载体产量提高机理的初步分析[D]. 无锡: 江南大学, 2017.
[19]PATZER S I, BRAUN V. Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974 [J]. Journal of Bacteriology, 2010, 192(2): 426-435.
[20]DUMAS Z, ROSS-GILLESPIE A, KUMMERLI R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments [J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280: e20131055.
[21]王晓璇. 拮抗细菌Burkholderia seminalis R456的铁代谢及其调控机制研究[D]. 杭州: 浙江大学, 2020.
[22]余贤美,林超,郑服丛,等. 枯草芽孢杆菌CAS15嗜铁素基因dhbC的克隆、表达及功能鉴定[J]. 生物工程学报,2009,25(6): 819-825.
[23]ROWLAND B M, TABER H W. Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate [J]. Journal of Bacteriology, 1996, 178(3): 854-861.
[24]ABE T, HASHIMOTO Y, SUGIMOTO S, et al. Amide compound synthesis by adenylation domain of Bacillibactin synthetase [J]. The Journal of Antibiotics, 2017, 70(4): 435-442.
[25]ZAWADZKA A M, ABERGEL R J, NICHIPORUK R, et al. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated Petrobactin [J]. Biochemistry, 2009, 48(16): 3645-3657.
[26]ZAWADZKA A M, KIM Y, MALTSEVA N, et al. Characterization of a Bacillus subtilis transporter for Petrobactin, an anthrax stealth siderophore [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21854-21859.
[27]CARLSON JR P E, DIXON S D, JANES B K, et al. Genetic analysis of Petrobactin transport in Bacillus anthracis [J]. Molecular Microbiology, 2010, 75(4): 900-909.
[28]PI H, HELMANN J D. Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(48): 12785-12790.
[29]GABALLA A, ANTELMANN H, AGUILAR C, et al. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small basic proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11927-11932.
[30]于欣冉,李颖杰,陈冠军,等. 铁摄取调节蛋白Fur功能和作用模式的研究进展[J]. 生物化学与生物物理进展, 2021, 48(6): 618-636.
[31]FONTENOT C R, TASNIM H, VALDES K A, et al. Ferric uptake regulator (Fur) reversibly binds a
[2Fe-2S]cluster to sense intracellular iron homeostasis in Escherichia coli [J]. Journal of Biological Chemistry, 2020, 295(46): 15454-15463.
[32]PINOCHET-BARROS A, HELMANN J D. Bacillus subtilis Fur is a transcriptional activator for the PerR-repressed pfeT gene, encoding an iron efflux pump [J]. Journal of Bacteriology, 2020, 202(8): e00697-19.
[33]GAO H, ZHANG J, LOU J, et al. Direct binding and regulation by Fur and HapR of the intermediate regulator and virulence factor genes within the ToxR virulence regulon in Vibrio cholera [J]. Frontiers in Microbiology, 2020, 11: e00709.
[34]BRUNET Y R, BERNARD C S, CASCALES E. Fur-dam regulatory interplay at an internal promoter of the enteroaggregative Escherichia coli type VI secretion sci1 gene cluster [J]. Journal of Bacteriology, 2020, 202(10): 00075-20.
[35]PISITHKUL T, SCHROEDER J W, TRUJILLO E A, et al. Metabolic remodeling during biofilm development of Bacillus subtilis [J]. mBio, 2019, 10(3): e00623-19.
[36]GRANDCHAMP G M, CARO L, SHANK E A. Pirated siderophores promote sporulation in Bacillus subtilis [J]. Applied and Environmental Microbiology, 2017, 83(10): e03293-16.
[37]QIN Y, HE Y, SHE Q, et al. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm [J]. Nature Communications, 2019, 10(1): e3702.
[38]马玥,宋楠楠,李冰清. 细菌铁摄取调节蛋白Fur的研究进展[J]. 中国病原生物学杂志, 2021, 16(1): 117-121,126.
[39]BASHYAM M D, HASNAIN S E. The extracytoplasmic function sigma factors: role in bacterial pathogenesis [J]. Infection, Genetics and Evolution, 2004, 4(4): 301-308.
[40]MCROSE D L, BAARS O, SEYEDSAYAMDOST M R, et al. Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): 7581-7586.
[41]NAGSTA T, OOBO T, AOZASA O. Efficacy of a bacterial siderophore, Pyoverdine, to supply iron to Solanum lycopersicum plants [J]. Journal of Bioscience and Bioengineering, 2013, 115(6): 686-690.
[42]YU X, AI C, XIN L, et al. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper [J]. European Journal of Soil Biology, 2011, 47(2): 138-145.
[43]刘邮洲,刘永锋,乔俊卿,等. 贝莱斯芽孢杆菌YL2021高产嗜铁素的发酵培养方法及嗜铁素的应用: CN202210200634.6 [P]. 2022.
[44]LIU Y Z, DAI C, ZHOU Y Q, et al. Pyoverdines are essential for the antibacterial activity of Pseudomonas chlororaphis YL-1 under low-iron conditions [J]. Applied and Environmental Microbiology, 2021, 87(7): e02840-20.
[45]CHEN W J, KUO T Y, HSIEH F C, et al. Involvement of type VI secretion system in secretion of iron chelator Pyoverdine in Pseudomonas taiwanensis [J]. Scientific Reports, 2016, 6: e32950.
[46]ABO-ZAID G A, SOLIMAN N A M, ABDULLAH A S, et al. Maximization of siderophores production from biocontrol agents, Pseudomonas aeruginosa F2 and Pseudomonas fluorescens JY3 using batch and exponential fed-batch fermentation [J]. Processes, 2020, 8: e8040455.
[47]CASADEVALL A. Cards of virulence and the global virulome for humans [J]. Microbe, 2006, 1(8): 359-364.
[48]KURTH C, KAGE H, NETT M. Siderophores as molecular tools in medical and environmental applications [J]. Organic and Biomolecular Chemistry, 2016, 14(35): 8212-8227.
[49]赵碧洁,聂麦茜,聂红云,等. 绿脓杆菌螯铁蛋白分泌及其对铜绿假单胞菌NY3降解烃类的影响作用[J]. 微生物学杂志, 2018, 38(1): 76-82.
[50]HESSE E, O’BRIEN S, TROMAS N, et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination [J]. Ecology Letters, 2018, 21(1): 117-127.
[51]KHAN A, GUPTA A, SINGH P, et al. Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis [J]. International Microbiology, 2020, 23(2): 277-286.
[52]CAO Y, ZHANG X, DENG J, et al. Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores [J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1727-1737.
[53]ULLAH A, HENG S, MUNIS M F H, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review [J]. Environ Environmental and Experimental Botany, 2015, 117: 28-40.
[54]WANG Y, HUANG W, LI Y, et al. Isolation, characterization, and evaluation of a high-siderophore-yielding bacterium from heavy metal-contaminated soil [J]. Environmental Science and Pollution Research, 2021, 29(3): 3888-3899.
[55]WANG Q, XIONG D ,ZHAO P, et al. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17 [J]. Journal of Applied Microbiology, 2011, 111(5): 1065-1074.
[56]PAGE M G P. Siderophore conjugates [J]. Annals of the New York Academy of Sciences, 2013, 1277: 115-126.
[57]STRANGE H R, ZOLA T A, CORNELISSEN C N. The fbpABC operon is required for ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19 [J]. Infection and Immunity, 2011, 79(1): 267-278.
[58]WENCEWICZ T A, MLLMANN U, LONG T E, et al. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin ‘Trojan Horse’ antibiotics and synthetic desferridanoxamine-antibiotic conjugates [J]. BioMetals, 2009, 22(4): 633-648.
[59]GORKA A, SLODERBACH A, MARSZALL M P, et al. Siderophore-drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy [J]. Trends in Pharmacological Sciences, 2014, 35(9): 442-449.
[60]SCHALK I J. Siderophore-antibiotic conjugates: exploiting iron uptake to deliver drugs into bacteria [J]. Clinical Microbiology and Infection, 2018, 24(8): 801-802.
[61]NEUMANN W, SASSONE-CORSI M, RAFFATELLU M, et al. Esterase-catalyzed siderophore hydrolysis activates an enterobactin-ciprofloxacin conjugate and confers targeted antibacterial activity [J]. Journal of the American Chemical Society, 2018, 140(15): 5193-5201.
[62]DAUNER M, EICHINGER A,LCKING G, et al. Reprogramming human siderocalin to neutralize Petrobactin, the essential iron scavenger of Anthrax Bacillus [J]. Angewandte Chemie-International Edition, 2018, 57(44): 14619-14623.
[63]FERREIRA C M H, VILAS-BOAS , SOUSA C A, et al. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions [J]. AMB Express, 2019, 9: e78.
[64]RIZZI A, ROY S, BELLENGER J P, et al. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation [J]. Applied and Environmental Microbiology, 2019, 85(3): e02439-18.
[65]RIZZI A, LEROUX J, CHARRON-LAMOUREUX V, et al. Bacillus subtilis modulates its usage of biofilm-bound iron in response to environmental iron availability [J]. Applied and Environmental Microbiology, 2020, 86(22): e00944-20.
[66]SATHE S, MATHEW A, AGNOLI K, et al. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia [J]. Evolution Letters, 2019, 3(6): 610-622.
[67]CROSA J H, WALSH C T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria [J]. Microbiology and Molecular Biology Reviews, 2002, 66(2): 223-249.
[68]STOREY E P, BOGHOZIAN R, LITTLE J L, et al. Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917 [J]. Biometals, 2006, 19: 637-649.
[69]BORRISS R, DANCHIN A, HARWOOD C R, et al. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement [J]. Microbial Biotechnology, 2018, 11: 3-17.
[70]OZKAYA O, BALBONTIN R, Gordo I, et al. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa [J]. Current Biology, 2018, 28(13): 2070-2080.

相似文献/References:

[1]龚丽,李云霞.一种新型ATP-依赖型ClpP家族蛋白质水解酶PlclpP基因的克隆、表达和酶学特性[J].江苏农业学报,2015,(06):1424.[doi:doi:10.3969/j.issn.1000-4440.2015.06.036]
 GONG Li,LI Yun-xia.Cloning, expression and characterization of a novel PlclpP gene encoding ATP-dependent ClpP protease[J].,2015,(01):1424.[doi:doi:10.3969/j.issn.1000-4440.2015.06.036]

备注/Memo

备注/Memo:
收稿日期:2022-05-18基金项目:江苏省农业科技自主创新基金项目[CX(21)3096];国家自然科学基金项目(32272624)作者简介:刘邮洲(1975-),女,江苏高邮人,博士,研究员,主要从事芽孢杆菌生物防治与农药开发应用研究。(E-mail)shitouren88888@163.com通讯作者:刘永锋,(E-mail)liuyf@jaas.ac.cn
更新日期/Last Update: 2023-03-21