[1]肖霞霞,杨云,马丽雅,等.大蒜内生巨大芽孢杆菌对邻苯二甲酸酯的共代谢降解特性及代谢途径分析[J].江苏农业学报,2023,(01):106-117.[doi:doi:10.3969/j.issn.1000-4440.2023.01.013]
 XIAO Xia-xia,YANG Yun,MA Li-ya,et al.Co-metabolic degradation characteristics and metabolic pathways analysis of phthalic acid esters by endophytic Bacillus megaterium in garlic[J].,2023,(01):106-117.[doi:doi:10.3969/j.issn.1000-4440.2023.01.013]
点击复制

大蒜内生巨大芽孢杆菌对邻苯二甲酸酯的共代谢降解特性及代谢途径分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
106-117
栏目:
耕作栽培·资源环境
出版日期:
2023-02-28

文章信息/Info

Title:
Co-metabolic degradation characteristics and metabolic pathways analysis of phthalic acid esters by endophytic Bacillus megaterium in garlic
作者:
肖霞霞12杨云12马丽雅2冯发运2葛静23李勇2王亚23余向阳23马桂珍1/sup>
(1.江苏海洋大学食品科学与工程学院,江苏连云港222005;2.江苏省农业科学院农产品质量安全与营养研究所,江苏南京210014;3.江苏大学环境与安全工程学院,江苏镇江212013)
Author(s):
XIAO Xia-xia12YANG Yun12MA Li-ya2FENG Fa-yun2GE Jing23LI Yong2WANG Ya23YU Xiang-yang23MA Gui-zhen1
(1.School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China;2.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)
关键词:
内生菌共代谢邻苯二甲酸酯降解途径
Keywords:
endophytic bacteriaco-metabolismphthalic acid estersdegradation pathways
分类号:
Q939.9
DOI:
doi:10.3969/j.issn.1000-4440.2023.01.013
文献标志码:
A
摘要:
土壤邻苯二甲酸酯(PAE)污染对生态环境和农产品安全均构成威胁。为实现PAE污染土壤的生物修复,明确共代谢基质对微生物降解PAE的影响机制,从PAE污染的大蒜中筛选获得能降解PAE的内生菌。通过生理生化特征和16S rRNA基因测序对其种属进行了鉴定,并研究了内生菌对6种PAE的共代谢降解特性,优化了共代谢降解条件,初步探索了共代谢条件下内生菌对PAE的降解代谢途径。结果表明:从大蒜中共筛选出3株能降解PAE的内生菌DGB-1、DGB-3和DGB-8,经鉴定3者皆为巨大芽孢杆菌(Bacillus megaterium)。3株菌株均能以6种PAE为碳源生长,但处理3 d后PAE的降解率仅0.89%~10.40%,降解能力较弱。添加D-纤维二糖为共代谢基质后,3株菌株对6种PAE的降解率均显著提升,其中菌株DGB-1和DGB-3处理3 d后能完全降解20 mg/L质量浓度的邻苯二甲酸二丁酯(DBP)和邻苯二甲酸丁苄酯(BBP)。以DGB-1为供试菌株,发现吐温80添加量、碳源种类、碳源浓度和接菌量对6种PAE的降解率均有显著影响,最佳降解条件为吐温80添加量0.025%,碳源为D-纤维二糖、浓度为10 mmol/L,接种菌液OD600为0.2。最佳降解条件下,当6种PAE质量浓度为50 mg/L时,邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、DBP、BBP、邻苯二甲酸二(2-乙基己)酯(DEHP)和邻苯二甲酸二辛酯(DnOP)在MSM培养基中的降解半衰期分别为9.01 d、2.27 d、2.13 d、1.99 d、7.84 d和6.72 d。菌株DGB-1不携带质粒,其PAE降解基因位于该菌染色体上;菌株DGB-1可通过水解作用完成对DBP、DEHP和DnOP的第一步降解,但水解作用均较弱;菌株DGB-1对6种PAE的降解代谢需要其细胞膜上的呼吸链系统参与,氧化还原反应增强可显著促进菌株DGB-1对6种PAE的降解。本研究为进一步利用内生菌进行PAE污染土壤的生物修复提供理论依据。
Abstract:
Soil phthalic acid esters (PAEs) pollution is a threat to the ecological environment and the safety of agricultural products. In order to realize the bioremediation of PAEs contaminated soil and clarify the influence mechanism of co-metabolic matrix on the degradation of PAEs by microorganisms, endophytic bacteria capable of degrading PAEs were screened from PAEs contaminated garlic. The strains were identified by physiological and biochemical characteristics and 16S rRNA gene sequencing, and the co-metabolic degradation characteristics of six PAEs by endophytes were studied. The co-metabolic degradation conditions were optimized, and the degradation metabolic pathway of PAEs by endophytes under co-metabolic condition was preliminarily explored.The results showed that three endophytic bacteria DGB-1, DGB-3 and DGB-8 capable of degrading PAEs were screened from garlic, and they were identified as Bacillus megaterium. Although three strains of bacteria demonstrated the ability to utilize six different types of PAEs as carbon sources for growth, their capacity for PAEs degradation was limited. After a three-day treatment, degradation rates ranged from 0.89% to 10.40%. After adding D-cellobiose as co-metabolism substrate, the degradation rates of six PAEs by the three strains were significantly improved. Among them, DGB-1 and DGB-3 strains could completely degrade 20mg/L dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) after three days of treatment. Using DGB-1 as test strain, it was found that the addition amount of Tween 80, carbon source type, carbon source concentration and inoculation dose had significant effects on the degradation rates of six PAEs. The optimal degradation conditions were as follows: the addition amount of Tween 80 was 0.025%, the carbon source was D-cellobiose, the concentration was 10 mmol/L, and OD600 value of bacterial solution was 0.2. Under the optimal degradation conditions, when the initial concentrations of six PAEs were 50 mg/L, the degradation half-lives of dimethyl phthalate (DMP), diethyl phthalate (DEP), DBP, BBP, di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) in inorganic salt medium were 9.01 d, 2.27 d, 2.13 d, 1.99 d, 7.84 d and 6.72 d, respectively. The strain DGB-1 did not carry a plasmid, and its PAEs degradation genes were located on the chromosome. DGB-1 could complete the first step degradation of DBP, DEHP and DnOP through hydrolysis, but the hydrolysis reactions were weak. The degradation of six PAEs by the strain DGB-1 required the participation of the respiratory chain system on the cell membrane. The enhanced redox reaction could significantly promote the degradation of six PAEs by the strain DGB-1. This study provides a theoretical basis for further use of endophytic bacteria for bioremediation of PAEs contaminated soil.

参考文献/References:

[1]WANG J, CHEN G, CHRISTIE P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015, 523: 129-137.
[2]MENG K, REN W, TENG Y, et al. Application of biodegradable seedling trays in paddy fields: Impacts on the microbial community[J]. Science of the Total Environment, 2019, 656: 750-759.
[3]KONG S, JI Y, LIU L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution, 2012, 170: 161-168.
[4]冯宇希,涂茜颖,冯乃宪,等. 我国温室大棚邻苯二甲酸酯(PAEs)污染及综合控制技术研究进展[J]. 农业环境科学学报, 2019, 38(10): 2239-2250.
[5]WANG J, LUO Y, TENG Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013, 180: 265-273.
[6]FENG N X, LIANG Q F, FENG Y X, et al. Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer[J]. Science of the Total Environment,2020,739:139883.
[7]CHENG J, LIU Y, WAN Q, et al. Degradation of dibutyl phthalate in two contrasting agricultural soils and its long-term effects on soil microbial community[J]. Science of the Total Environment, 2018, 640: 821-829.
[8]韩永和,何睿文,李超,等. 邻苯二甲酸酯降解细菌的多样性、降解机理及环境应用[J]. 生态毒理学报, 2016, 11(2): 37-49.
[9]ZHAO H M, DU H, HUANG C Q, et al. Bioaugmentation of exogenous strain Rhodococcus sp. 2G can efficiently mitigate di(2-ethylhexyl) phthalate contamination to vegetable cultivation[J]. Journal of Agricultural and Food Chemistry, 2019, 67(25): 6940-6949.
[10]FENG N X, YU J, MO C H, et al. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3[J]. Science of the Total Environment, 2018, 616: 117-127.
[11]FENG F Y, ZHAN H L, WAN Q, et al. Rice recruits Sphingomonas strain HJY-rfp via root exudate regulation to increase chlorpyrifos tolerance and boost residual catabolism[J]. Journal of Experimental Botany , 2021, 72(15): 5673-5686.
[12]FENG F Y, GE J, LI Y, et al. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability[J]. Chemosphere, 2017, 184: 505-513.
[13]SUN K, LIU J, GAO Y, et al. Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination[J]. Environmental Science and Pollution Research, 2015, 22(24): 19529-19537.
[14]张银萍,王芳,杨兴伦,等. 土壤中高环多环芳烃微生物降解的研究进展[J]. 微生物学通报, 2010, 37(2): 280-288.
[15]GRANDCLEMENT C, SEYSSIECQ I, PIRAM A, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review[J]. Water Research, 2017, 111: 297-317.
[16]王亚,冯发运,葛静,等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3): 829-842.
[17]王亚,肖霞霞,杨云,等. 江苏产区大蒜中邻苯二甲酸酯含量检测及溯源分析[J]. 环境科学, 2023. doi: 10.13227/j.hjkx.202204278.
[18]MA Z, LIU J, DICK R P, et al. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6[J]. Environmental Pollution, 2018, 240:359-367.
[19]冯发运,朱宏,李俊领,等. 一株小飞蓬内生毒死蜱降解菌的分离鉴定及其降解特性初探[J]. 农药学学报, 2015, 17(1): 89-96.
[20]KONG X, JIN D, TAI X, et al. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil[J]. Science of the Total Environment, 2019, 667: 691-700.
[21]CHENG J, WAN Q, GE J, et al. Major factors dominating the fate of dibutyl phthalate in agricultural soils[J]. Ecotoxicology and Environmental Safety, 2019, 183: 109569.
[22]LI Y, YAN H, LIU Q, et al. Accumulation and transport patterns of six phthalic acid esters (PAEs) in two leafy vegetables under hydroponic conditions[J]. Chemosphere, 2020, 249: 126457.
[23]PANDEY J, CHAUHAN A, JAIN R K. Integrative approaches for assessing the ecological sustainability of in situ bioremediation[J]. FEMS Microbiology Reviews, 2009, 33(2): 324-375.
[24]RENTZ J A, ALVARE P J J, SCHNOOR J L. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02[J]. Environmental Pollution, 2008, 151(3): 669-677.
[25]CHEN X, ZHANG X L, YANG Y, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase[J]. Biodegradation, 2015, 26(2): 171-182.
[26]HUANG Y H, HUANG X J, CHEN X H, et al. Biodegradation of di-butyl phthalate (DBP) by a novel endophytic bacterium Bacillus subtilis and its bioaugmentation for removing DBP from vegetation slurry[J]. Journal of Environmental Management, 2018, 224: 1-9.
[27]ZHAO H M, HU R W, HUANG H B, et al. Enhanced dissipation of DEHP in soil and simultaneously reduced bioaccumulation of DEHP in vegetable using bioaugmentation with exogenous bacteria[J]. Biology and Fertility of Soils, 2017, 53(6): 663-675.
[28]CHANG B V, YANG C M, CHENG C H, et al. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere, 2004, 55(4): 533-538.
[29]SUBASHCHANDRABOSE S R, VENKATESWARLU K, NAIIDU R, et al. Biodegra dation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Over expression of amidohydrolase induced by pyrene and BaP[J]. Science of the Total Environment,2019,651:813-821.
[30]PENG R H, XIONG A S, XUE Y, et al. Microbial biodegradation of polyaromatic hydrocarbons[J]. FEMS Microbiology Reviews, 2008, 32(6): 927-955.
[31]EATON R W. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B[J]. Journal of Bacteriology,2001,183(12):3689-3703.
[32]XU W J, WAN Q, WANG W F, et al. Biodegradation of dibutyl phthalate by a novel endophytic Bacillus subtilis strain HB-T2 under in-vitro and in-vivo conditions[J]. Environmental Technology, 2022,43(13):1917-1926.
[33]ZHANG S, RENSING C, ZHU Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science & Technology, 2014, 48(2): 994-1000.
[34]XU J J, ZHU X L, ZHANG Q Q, et al. Roles of MnO2 on performance, sludge characteristics and microbial community in anammox system[J]. Science of the Total Environment, 2018, 633: 848-856.
[35]TIAN H, LI J, MU Z, et al. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles[J]. Separation and Purification Technology, 2009, 66(1): 84-89.

相似文献/References:

[1]付思远,彭玉林,黄水明,等.内生菌协助水稻缓解重金属胁迫和积累研究进展[J].江苏农业学报,2023,(03):859.[doi:doi:10.3969/j.issn.1000-4440.2023.03.028]
 FU Si-yuan,PENG Yu-lin,HUANG Shui-ming,et al.Research progress of endophytes in alleviating heavy metal stress and accumulation in rice[J].,2023,(01):859.[doi:doi:10.3969/j.issn.1000-4440.2023.03.028]
[2]杨云,肖霞霞,陈小龙,等.一株植物内生枯草芽孢杆菌对6种邻苯二甲酸酯的共代谢降解[J].江苏农业学报,2023,(02):393.[doi:doi:10.3969/j.issn.1000-4440.2023.02.012]
 YANG Yun,XIAO Xia-xia,CHEN Xiao-long,et al.Co-metabolic degradation of six phthalic acid esters by an endophytic Bacillus subtilis[J].,2023,(01):393.[doi:doi:10.3969/j.issn.1000-4440.2023.02.012]

备注/Memo

备注/Memo:
收稿日期:2022-09-29基金项目:国家自然科学基金面上项目(32272600);江苏省农业科技自主创新基金项目[CX(20)1009];江苏中晚熟大蒜产业集群建设项目(22912105)作者简介:肖霞霞(1995-), 女, 山东滨州人, 硕士研究生, 主要从事农产品产地污染修复研究。(E-mail)x17853479138@163.com通讯作者:马桂珍,(E-mail) guizhenma@sohu.com;王亚,(E-mail)yawang@jaas.ac.cn
更新日期/Last Update: 2023-03-21