[1]李万星,李小霞,李丹,等.不同轮作模式下旱地番茄土壤理化性质及细菌群落组成特征[J].江苏农业学报,2022,38(04):949-957.[doi:doi:10.3969/j.issn.1000-4440.2022.04.011]
 LI Wan-xing,LI Xiao-xia,LI Dan,et al.Soil physical and chemical properties and bacterial community composition in dryland tomato under different rotation patterns[J].,2022,38(04):949-957.[doi:doi:10.3969/j.issn.1000-4440.2022.04.011]
点击复制

不同轮作模式下旱地番茄土壤理化性质及细菌群落组成特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
949-957
栏目:
耕作栽培·资源环境
出版日期:
2022-08-31

文章信息/Info

Title:
Soil physical and chemical properties and bacterial community composition in dryland tomato under different rotation patterns
作者:
李万星1李小霞1李丹1靳鲲鹏1韩文清1刘永忠1黄学芳2苏秀敏1王佼1曹晋军1
(1.山西农业大学谷子研究所,山西长治046000;2.山西农业大学山西有机旱作农业研究院,山西太原030000)
Author(s):
LI Wan-xing1LI Xiao-xia1LI Dan1JIN Kun-peng1HAN Wen-qing1LIU Yong-zhong1HUANG Xue-fang2SU Xiu-min1WANG Jiao1CAO Jin-jun1
(1.Institute of Millet, Shanxi Agricultural University, Changzhi 046000, China;2.Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030000, China)
关键词:
轮作土壤养分土壤酶土壤微生物土壤细菌群落组成
Keywords:
crop rotationsoil nutrientsoil enzymesoil microorganismsoil bacterial community composition
分类号:
S641.2
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.011
文献标志码:
A
摘要:
为研究不同轮作模式对旱地番茄土壤肥力及细菌群落组成特征的影响,以旱地番茄-豆角-糯玉米-旱地番茄(LVZm)、旱地番茄-豆角-西葫芦-旱地番茄(LVCp)、旱地番茄-豆角-花生-旱地番茄(LVAh)、旱地番茄-豆角-葱-旱地番茄(LVAf)、旱地番茄-豆角-秋葵-旱地番茄(LVAe)、旱地番茄-豆角-黄瓜-旱地番茄(LVCs)、旱地番茄连作(CK)为研究对象,测定土壤容重、土壤团聚体结构、土壤养分、土壤酶活性、细菌丰富度和多样性,并通过主成分分析选出最优轮作模式。结果表明不同轮作处理对土壤容重、土壤团聚体结构和土壤养分的影响存在差异。与对照相比,LVZm、LVAh、LVAf和LVCs处理显著降低了土壤容重;除LVAe处理外,各轮作处理均显著降低0~10 cm土层的<0.25 mm土壤团聚体含量;除了LVAf处理和LVAe处理有机质含量与对照差异不显著,其余轮作处理有机质含量都显著增加;全氮、全钾差异不显著;除了LVCs处理全磷和碱解氮显著低于对照,其余各轮作处理均显著高于对照;除LVAe处理外,各轮作处理有效磷和速效钾含量均显著高于对照;与对照相比,各轮作处理pH和电导率降低或显著降低,碱性磷酸酶、脲酶、蔗糖酶和纤维素酶活性均增加或显著增加,过氧化氢酶、脲酶和蛋白酶变化不明显。细菌群落组成测定结果表明变形菌门、放线菌门、酸杆菌门、绿弯菌门、芽单胞菌门为各处理的优势菌门,除绝大多数的未知菌属外,溶杆菌属、Subgroup_6、假平胞菌属、藤黄单孢菌属为优势菌属。聚类分析结果表明,LVZm处理和LVAf处理细菌群落结构最相似,LVCp处理与各处理细菌群落结构相差最大。主成分分析(PCA)结果表明,LVAh处理优于其他处理。综上所述,轮作改善了土壤肥力,改变了土壤细菌群落结构,其中以旱地番茄-豆角-花生-旱地番茄轮作模式效果最好。
Abstract:
In order to study the effects of different rotation patterns on soil fertility and bacterial community composition of dryland tomato, dryland tomato-Phaseolus vulgaris-waxy corn-dryland tomato (LVZm), dryland tomato-Phaseolus vulgaris-zucchini-dryland tomato (LVCp), dryland tomato-Phaseolus vulgaris-peanut-dryland tomato(LVAh), dryland tomato-Phaseolus vulgaris-Allium fistulosum-dryland tomato(LVAf),dryland tomato-Phaseolus vulgaris-okra-dryland tomato (LVAe), dryland tomato-Phaseolus vulgaris-cucumber-dryland tomato (LVCs), and continuous cropping of dryland tomato (CK) were used as research objects. The soil bulk density, soil aggregates, soil nutrient content, soil enzyme activity, bacterial richness and diversity were determined, and the optimal rotation mode was studied by principal component analysis. The results showed that the effects of different crop rotation treatments on soil bulk density, soil aggregates and soil nutrients were different. Compared with the control, the LVZm, LVAh, LVAf and LVCs reduced soil bulk density significantly. Except LVAe treatment, every crop rotation treatment significantly reduced the content of aggregates less than 0.25 mm in 0-10 cm soil layer. Compared with the control, the organic matter contents of all crop rotation treatments increased significantly except LVAf and LVAe treatments. There was no significant difference in total nitrogen and total potassium. Compared with the control, total phosphorus and alkali-hydrolyzed nitrogen of all crop rotation treatments increased significantly except LVCs treatments. Compared with the control, the contents of usable phosphorus and available potassium in all crop rotation treatments increased significantly except LVAe treatments. The pH and electrical conductivity of each rotation treatments decreased or significantly decreased, compared with the control, decreased the alkaline phosphatase, urease invertase and cellulase significantly increased, and the variation of catalase, urease and protease was not obvious. The results of the bacterial community composition showed that Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi and Gemmatimonadetes were the dominant phyla. Lysobacter, Subgroup _ 6, Sphingomonas and Luteimonas were the dominant genera. The results of cluster analysis indicated that the bacterial community structures of LVZm and LVAf were the most similar, and the difference of bacterial community structures between LVCp treatment and the other treatments was the largest. By principal component analysis, the LVAh treatment was better than other treatments. In summary, crop rotation can improve the soil fertility and change the soil bacterial community structure, and LVAh its the best rotation mode.

参考文献/References:

[1]李小霞,靳鲲鹏,李万星,等.旱地番茄连作障碍机理研究进展[J].北方农业学报,2020,48(1):35-40.
[2]宋丽萍,罗珠珠,李玲玲,等.陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响[J].草业学报,2015,24(7):12-20.
[3]孙倩,吴宏亮,陈阜,等.不同作物轮作对谷田土壤酶活性和土壤细菌群落的影响[J].生态环境学报,2020,29(12): 2385-2393.
[4]王丽红,郭晓冬,谭雪莲,等.不同轮作方式对马铃薯土壤酶活性及微生物数量的影响[J].干旱地区农业研究,2016,34(5):109-113.
[5]刘海娇,苏应威,方岚,等.茴香轮作调控土壤细菌群落缓解三七连作障碍的效应及机制[J].中国生物防治学报,2020,36(6):139-149.
[6]杨尚东,李荣坦,吴俊,等. 番茄连作与轮作土壤生物学特性及细菌群落结构的比较[J].生态环境学报,2016,25(1):76-83.
[7]张立军,张宏喜,杜冬梅.东北高寒地区温室冬春茬菜豆栽培技术[J].特种经济动植物,2021, 24(2):39-40, 44.
[8] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
[9] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[10]CHAO A. Nonparametric estimation of the number of classes in a population [J]. Scandinavian Journal of Statistics, 1984, 11(4): 265-270.
[11]CHAO A, LEE S M. Estimating the number of classes via sample coverage [J]. Publications of the American Statistical Association, 1992, 87(417): 210-217.
[12]SOETAERT K, HEIP C. Sample-size dependence of diversity indices and the determination of sufficient sample size in a high-diversity deep-sea environment [J]. Marine Ecology Progress, 1990, 59: 305-307.
[13]陈吉,赵炳梓,张佳宝,等. 主成分分析方法在长期施肥土壤质量评价中的应用[J]. 土壤,2012,42(3):415-420.
[14]张晓霞,杨宗儒,查同刚,等.晋西黄土区退耕还林22年后林地土壤物理性质的变化[J].生态学报,2017,37(2):416-424.
[15]张宇,蒋代华,黄金兰,等.粉垄耕作对赤红壤团聚体粒级分布和稳定性的影响[J].生态学杂志,2021,40(12):3922-3932.
[16]王伏伟,王晓波,李金才,等.施肥及秸秆还田对砂姜黑土细菌群落的影响[J].中国生态农业学报,2015,23(10):1302-1311.
[17]杜思瑶,于淼,刘芳华,等.设施种植模式对土壤细菌多样性及群落结构的影响[J].中国生态农业学报,2017,25(11):1615-1625.
[18]张立成,肖卫华,彭沛宇,等.稻-稻-油菜轮作土壤细菌群落的特征[J].应用与环境生物学报,2018,24(2):276-280.
[19]杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,2008,45(5):925-932.
[20]宋以玲,于建,陈士更,等.化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360
[21]杨波,于志会. 华北落叶松根际土壤氮素细菌类群和氮素代谢研究[J].江苏农业科学,2021,49(23):225-231.
[22]韦江璐,覃英,谢显秋,等. 促生菌对土壤养分、酶活性及细菌群落功能多样性的影响[J].南方农业学报,2020,51(10):2348-2357.
[23]彭日民,彭勇,向国红,等.不同入侵植物根际土壤养分、酶活性和微生物学特征[J].江苏农业科学,2021,49(21):217-223.
[24]宋蒙亚,李忠佩,吴萌,等.不同种植年限设施菜地土壤微生物量和群落结构的差异[J].中国农业科学,2015,48(18):3635-3644.
[25]黄健,朱旭炎,陆金,等.狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响[J].环境科学,2019,40(12):5550-5560.
[26]刘佳,陈晓芬,刘明,等.长期施肥对旱地红壤细菌群落的影响[J].土壤学报,2020,57(2):468-478.
[27]EICHORST S A,KUSKE C R,SCHMIDT T M. Inuence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria [J]. Applied and Environmental Microbiology, 2011, 77(2): 586-596.
[28]NAVARRETE A A, VENTURINI A M, MEYER K M, et al. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon [J].Frontiers in Microbiology,2015, 6: 1443.
[29]王悦,杨贝贝,王浩,等.不同种植模式下丹参根际土壤微生物群落结构变化[J].生态学报,2019,39(13):4832-4843.
[30]范业庚,陈荣发,闫海锋,等.甘蔗轮作青饲玉米和花生对甘蔗生长和土壤性状的影响[J].作物杂志,2021(1):104-111.
[31]ASCHI A,AUBERT M,RIAH-ANGLET W, et al. Introduction of faba bean in crop rotation:Impacts on soil chemical and biological characteristics[J].Applied Soil Ecology,2017,120:219-228.
[32]吕毅,宋富海,李园园,等.轮作不同作物对苹果园连作土壤环境及平邑甜茶幼苗生理指标的影响[J].中国农业科学,2014,47(14):2830-2839.

相似文献/References:

[1]顾大路,王伟中,孙爱侠,等.不同轮作模式对日光温室黄瓜生长的影响[J].江苏农业学报,2016,(04):874.[doi:10.3969/j.issn.100-4440.2016.04.025]
 GU Da-lu,WANG Wei-zhong,SUN Ai-xia,et al.Cucumber growth in solar greenhouse affected by rotation modes[J].,2016,(04):874.[doi:10.3969/j.issn.100-4440.2016.04.025]
[2]石元豹,曹兵,宋丽华.CO2浓度倍增对宁夏枸杞种植地土壤养分及微生物的影响[J].江苏农业学报,2016,(01):201.[doi:10.3969/j.issn.1000-4440.2016.01.031 ]
 SHI Yuan-bao,CAO Bing,SONG Li-hua.Influence of doubled CO2 concentration on soil nutrient and microorganism for Lycium barbarum cultivation[J].,2016,(04):201.[doi:10.3969/j.issn.1000-4440.2016.01.031 ]
[3]江叶枫,郭熙,叶英聪,等.南方丘陵山区耕地土壤养分空间变异及合理采样数[J].江苏农业学报,2017,(03):568.[doi:doi:10.3969/j.issn.1000-4440.2017.03.013]
 JIANG Ye-feng,GUO Xi,YE Ying-cong,et al.Spatial variation and reasonable sampling number of soil nutrients in southern China hilly and mountainous regions[J].,2017,(04):568.[doi:doi:10.3969/j.issn.1000-4440.2017.03.013]
[4]赖朝圆,杨越,陶成圆,等.不同作物-香蕉轮作对香蕉生产及土壤肥力质量的影响[J].江苏农业学报,2018,(02):299.[doi:doi:10.3969/j.issn.1000-4440.2018.02.011]
 LAI Chao-yuan,YANG Yue,TAO Cheng-yuan,et al.Effects of replanted banana after rotation of different crops on banana production and soil fertility quality[J].,2018,(04):299.[doi:doi:10.3969/j.issn.1000-4440.2018.02.011]
[5]张慧,马连杰,杭晓宁,等.不同轮作模式下稻田土壤细菌和真菌多样性变化[J].江苏农业学报,2018,(04):804.[doi:doi:10.3969/j.issn.1000-4440.2018.04.013]
 ZHANG Hui,MA Lian-jie,HANG Xiao-ning,et al.Changes of soil bacterial and fungal diversity in paddy soils under different rotation patterns[J].,2018,(04):804.[doi:doi:10.3969/j.issn.1000-4440.2018.04.013]
[6]王秋君,马艳,郭德杰,等.设施蔬菜土壤养分状况分析及综合评价[J].江苏农业学报,2019,(03):624.[doi:doi:10.3969/j.issn.1000-4440.2019.03.017]
 WANG Qiu-jun,MA Yan,GUO De-jie,et al.Analysis and comprehensive evaluation of soil nutrient status for greenhouse vegetable[J].,2019,(04):624.[doi:doi:10.3969/j.issn.1000-4440.2019.03.017]
[7]张霞,李健,秦枫,等.熟化垫料等氮量替代化肥对小麦产量、土壤养分及当季氮肥利用率的影响[J].江苏农业学报,2019,(05):1082.[doi:doi:10.3969/j.issn.1000-4440.2019.05.012]
 ZHANG Xia,LI Jian,QIN Feng,et al.Effects of replacement of fertilizer with spent litters in pig-litter system on grain yield, soil nutrient and nitrogen use efficiency of wheat in first season under the same nitrogen input[J].,2019,(04):1082.[doi:doi:10.3969/j.issn.1000-4440.2019.05.012]
[8]周利利,段增强,韩庆忠,等.秭归县柑橘园土壤肥力综合评价[J].江苏农业学报,2019,(06):1346.[doi:doi:10.3969/j.issn.1000-4440.2019.06.011]
 ZHOU Li-li,DUAN Zeng-qiang,HAN Qing-zhong,et al.Comprehensive evaluation of soil fertility in citrus orchards in Zigui County[J].,2019,(04):1346.[doi:doi:10.3969/j.issn.1000-4440.2019.06.011]
[9]王廷峰,赵密珍,关玲,等.玉米套作及秸秆还田对草莓连作土壤养分及微生物区系的影响[J].江苏农业学报,2019,(06):1421.[doi:doi:10.3969/j.issn.1000-4440.2019.06.022]
 WANG Ting-feng,ZHAO Mi-zhen,GUAN-Ling,et al.Effects of intercropping with corn and straw returning on nutrients and microflora in strawberry continuous cropping soil[J].,2019,(04):1421.[doi:doi:10.3969/j.issn.1000-4440.2019.06.022]
[10]张奇,张振华,卢信.生物有机肥施用对黄泛冲积区贫瘠土壤养分、酶和微生物多样性的影响[J].江苏农业学报,2020,(02):325.[doi:doi:10.3969/j.issn.1000-4440.2020.02.011]
 ZHANG Qi,ZHANG Zhen-hua,LU Xin.Effects of bioorganic fertilizer application on nutrient, enzyme activity, microbial diversity of the barren soil in Yellow River alluvial areas[J].,2020,(04):325.[doi:doi:10.3969/j.issn.1000-4440.2020.02.011]

备注/Memo

备注/Memo:
收稿日期:2022-03-23基金项目:山西省科技重大专项计划“揭榜挂帅”项目(202101140601026);国家重点研发计划项目(2021YFD1901105-5);山西省重点研发计划重点项目(201703D211002-4-3)作者简介:李万星(1978-),男,山西长治人,本科,副研究员,主要从事有机旱作技术研究和大豆育种与栽培。(E-mail) gzslwx@163.com通讯作者:曹晋军,(E-mail)53764135@qq.com
更新日期/Last Update: 2022-09-06