参考文献/References:
[1]钱婧雅,刘芬,屈成,等.水稻类病斑突变基因的克隆及其机制研究进展[J]. 分子植物育种, 2021, 19(10):1-8.
[2]DIETRICH R A, DELANEY TP, UKNES S J, et al. Arabidopsis mutants simulating disease resistance response[J]. Cell, 1994,77(4):565-577.
[3]GUO C, WU G, XING J, et al. A mutation in a coproporphyrinogen iii oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in arabidopsis[J]. Plant Cell Reports, 2013, 32(5):687-702.
[4]PERSSON M, RASMUSSEN M, FALK A, et al. Barley mutants with enhanced level of resistance to swedish isolates of bipolaris sorokiniana, causal agent of spot blotch[J]. Plant Breeding, 2008, 127(6):639-643.
[5]LI S T, PEI Z Y, LUO L J , et al. Isolation and characterization of rice lesion mimic mutants from a T-DNA tagged population[J]. Progress in Natural Science, 2005, 15(1):17-23.
[6]WANG L, HAN S, ZHONG S, et al. Characterization and fine mapping of a necrotic leaf mutant in maize (Zea mays L.)[J]. Journal of Genetics and Genomics, 2013, 40(6):307-314.
[7]WANG S H, LIM J H, KIM S S, et al. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice[J]. Journal of Experimental Botany,2015, 66(22):7045-7059.
[8]BADIGANNAVAR A M, KALE D M, EAPEN S, et al. Inheritance of disease lesion mimic leaf trait in groundnut[J]. Journal of Heredity, 2002, 93(1): 50-52.
[9]CHUNG J, STASWICK P E, GRAEF G L, et al. Inheritance of a disease lesion mimic mutant in soybean[J]. Journal of Heredity, 1998, 89(4): 363-365.
[10]ZHU X B, ZE M, CHERN M H, et al. Deciphering rice lesion mimic mutants to understand molecular network governing plant immunity and growth[J]. Rice Science, 2020, 27(4): 278-288.
[11]WU C J, BORDEOS A, MADAMBA M R, et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomic, 2008, 279(6): 605-619.
[12]KOSSLAK R M, DIETER J R, RUFF R L, et al. Partial resistance to root-borne infection by phytophthora sojae in three allelic necrotic root mutants in soybean[J]. Journal of Heredity, 1996, 87(6): 415-422.
[13]YAO N, GREENBERG J T. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death[J]. The Plant Cell, 2006, 18(2): 397-411.
[14]LIN A H, WANG Y Q, TANG J Y, et al. Nitric oxideand protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2012, 158(1): 451-464.
[15]KIYOSAWA S. Inheritance of a particular sensitivity of the rice variety, sekiguchi asahi, to pathogens and chemicals, and linkage relationship with blast resistance genes[J]. Nogyo Gijutsu Kenkyusho Hokoku, 1970, 21(1): 61-72.
[16]WANG N L, LONG T, YAO W, et al. Mutant resources for the functional analysis of the rice genome[J]. Molecular Plant, 2013, 6(3): 596-604.
[17]UENO M, SHIBATA H, KIHARA J, et al. Increased tryptophan decarboxylase and monoamine oxidase activities induce sekiguchi lesion formation in rice infected with magnaporthe grisea[J]. The Plant Journal, 2003,36(2): 215-228.
[18]YOSHIMURA A, IDETA O, IWATA N, et al. Linkage map of phenotype and RFLP markers in rice[J]. Plant Molecular Biology, 1997,35(1/2): 49-60.
[19]YIN Z, CHEN J, ZENG L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8): 869-876.
[20]KIM J A, CHO K W, RAKSHA S, et al. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance[J]. Molecules and Cells, 2009, 28(5): 431-439.
[21]SONG G H, KWON C T, KIM S H, et al. The rice SPOTTED LEAF 4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence[J]. Frontiers in Plant Science, 2018, 9: 1925.
[22]CHEN X F, HAO L , PAN J W , et al. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2): 939-949.
[23]YAMANOUCHI U, YANO M, LIN H X, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11): 7530-7535.
[24]KAORI K, TAKASHI Y, KENSUKE K, et al.Regulatory mechanisms of ROI generation are affected by rice spl mutations[J]. Plant and Cell Physiology, 2006, 47(8): 1035-1044.
[25]ZENG L R, QU S H, BORDEOS A, et al. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. The Plant Cell, 2004, 16(10): 2795-2808.
[26]FAN J B, BAI P F, NING Y S, et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice[J]. Cell Host & Microbe, 2018, 23(4): 498-510.
[27]MIGUEL E, VEGA S, ZENG L R, et al. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice[J]. The Plant Cell, 2008, 20(6): 1456-1469.
[28]LIU J L, CHAN H P, HE F, et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J].PLoS Pathogens, 2015, 11(2): e1004807.
[29]RITSUKO M, HIDEYUKI H, RYOTA K, et al. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight[J]. Plant Science, 2002, 163(2): 345-353.
[30]SONG C N, QIAN J L, FANG J G, et al. Cloning, subcellular localization and expression analysis of spl9 and spl13 genes from poncirus trifoliata[J]. Scientia Agricultura Sinica, 2010,43(10): 2105-2114.
[31]MASAKI M, CHIKAKO T, KAZUHIKO S, et al. Isolation and molecular characterization of aspotted leaf 18 mutants by modified activation-tagging in rice[J]. Plant Molecular Biology, 2007, 63(6): 847-860.
[32]宋莉欣, 黄奇娜, 奉保华, 等.水稻类病斑表型叶突变体spl21的鉴定与基因定位[J]. 作物学报, 2015, 41(10): 1519-1528.
[33]CHEN Z, HEN T, SATHE A P, et al. Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice[J]. International journal of molecular sciences, 2018, 19(12): 3766.
[34]CHEN T, CHEN Z, ATUL P S, et al. Characterization of a novel gain-of-function spotted-leaf mutant with enhanced disease resistance in rice[J]. Rice Science, 2019, 26(6): 372-383.
[35]QIAO Y L, JIANG W Z, LEE J H, et al. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa)[J]. New phytologist, 2010, 185(1): 258-274.
[36]WANG Z H, WANG Y, HONG X, et al. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3): 973-987.
[37]HUANG Q N, SHI Y F, YANG Y, et al. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice[J]. Journal of Integrative Plant Biology, 2011, 53(8): 671-681.
[38]代高猛, 朱小燕, 李云峰, 等.水稻类病斑突变体spl31的遗传分析与基因定位[J]. 作物学报, 2013, 39(7):1223-1230.
[39]SUN L T, WANG Y H, LIU L L, et al. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice[J]. Scientific Reports, 2017, 7(1): 41846.
[40]WANG S, LEI C L, WANG J L, et al. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice[J]. Journal of Experimental Botany, 2017, 68(5): 899-913.
[41]刘宝玉,刘军化,杜丹,等.水稻类病斑突变体spl34的鉴定与基因精细定位[J].作物学报, 2018, 44(3):332-342.
[42]MA J, WANG Y F, MA X D, et al. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice[J]. Plant Biotechnology Journal, 2019, 17(8): 1679-1693.
[43]SUN H M, MAO J J, LAN B, et al. Characterization and mapping of a spotted-leaf genotype, sply181 that confers blast susceptibility in rice[J]. European Journal of Plant Pathology, 2014, 140(3): 407-417.
[44]BABU R, JIANG C J, XU X, et al. Isolation, fine mapping and expression profiling of a lesion mimic genotype, splnf4050-8 that confers blast resistance in rice[J]. 2011, 122(4): 831-854.
[45]奉保华. 水稻类病斑表型叶突变体HM47的基因克隆与功能分析[D], 北京:中国农业科学院, 2015.
[46]ENDO A, NELSON K M, THOMS K, et al. Functional characterization of xanthoxin dehydrogenase in rice[J]. Journal of Plant Physiology, 2014, 171(14): 1231-1240.
[47]CAMPBELL M A,RONALD P C. Characterization of four rice mutants with alterations in the defense response pathway[J]. Molecular Plant Pathology, 2005, 6(1): 11-21.
[48]AKIRA T, TSUTOMU K, KENJI H, et al. Lesion mimic mutants of rice with alterations in early signaling events of defense[J]. The Plant Journal, 1999, 17(5): 535-545.
[49]FENG B H, YANG Y, SHI Y F, et al. Genetic analysis and gene mapping of light brown spotted leaf mutant in rice[J]. Rice Science, 2013, 20(1):13-18.
[50]LI Z, ZHANG Y X, LIU L, et al. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa)[J]. Plant Physiology and Biochemistry, 2014, 80: 300-307.
[51]FEKIH R, TAMIRU M, KANZAKI H, et al. The rice(Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response[J]. Molecular Genetics and Genomics, 2015, 290(2):611-622.
[52]MA J Y, CHEN S L, ZHANG J H, et al. Identification and genetic mapping of a lesion mimic mutant in rice[J]. Rice Science, 2012, 19(1): 1-7.
[53]HU B, ZHU C, LI F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115.
[54]王建军,张礼霞,王林友,等.水稻类病变(lesion resembling disease)突变体对光照和温度的诱导反应[J].中国农业科学, 2010, 43(10): 2039-2044.
[55]TONG X H, QI J F, ZHU X D, et al. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal, 2012, 71(5): 763-775.
[56]UNDAN J R, TAMIRU M, ABE A et al. Mutation in oslms, a gene encoding a protein with two double-stranded rna binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.) [J]. Genes & Genetic Systems, 2012, 87(3): 169-179.
[57]WANG L J, PEI Z Y, TIAN Y C, et al. Oslsd1, a rice zinc finger protein, regulates programmed cell death and callus differentiation[J]. Molecular Plant-Microbe Interactions, 2005, 18(5): 375-384.
[58]CHERN M, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 511-520.
[59]YUAN Y, ZHONG S, LI Q, et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1 /NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechnology Journal, 2007, 5(2): 313-324.
[60]MATSUI H, TAKAHASHI A, HIROCHIKA H et al. Rice immune regulator, OsPti1a, is specifically phosphorylated at the plasma membrane[J]. Plant Signaling & Behavior, 2015, 10(3): e991569.
[61]KIM J A, CHO K W, RAKSHA S, et al. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance[J]. Molecules and Cells, 2009, 28(5): 431-439.
[62]JIAO B B, WANG J J, ZHU X D, et al. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice[J]. Molecular Plant, 2012, 5(1): 205-217.
[63]JIANG C J, MASAKI S, MAEDA S, et al. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice[J]. Molecular Plant-microbe Interactions, 2009, 22(7): 820-829.
[64]YAMAGUCHI T, KURODA M, YAMAKAWA H, et al. Suppression of a phospholipase d gene, ospldβ1, activates defense responses and increases disease resistance in rice[J]. Plant Physiology, 2009, 150(1): 308-319.
[65]SUN C H, LIU L C, TANG J Y, et al. RLIN1, encoding a putative coproporphyrinogen Ⅲ oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37 .
[66]UJIWARA T, MAISONNEUVE S, ISSHIKI M, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. Journal of Biological Chemistry, 2010, 285(15): 11308-11313.
[67]YOU Q Y, ZHAI K R, YANG D L, et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance[J]. Cell Host & Microbe, 2016, 20(6): 758-769.
[68]WANG Y Q, LIN A H, GARY J L, et al. H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species[J]. Journal of Integrative Plant Biology, 2013, 55(3): 202-208.
[69]CHERN M, XU Q, BART R S, et al. Correction: a genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity[J]. PLoS Genetics, 2016,12(7): e1006182.
[70]SAKURABA Y, RAHMAN M L, CHO S H, et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions[J]. The Plant Journal, 2013, 74(1): 122-133.
[71]HE Y, ZHANG X B, SHI Y F, et al. Premature senescence leaf 50 promotes heat stress tolerance in rice (Oryza sativa L.)[J]. Rice, 2021, 14(1): 53.
[72]CHEN G, WU C, HE L, et al. Knocking out the gene rls1 induces hypersensitivity to oxidative stress and premature leaf senescence in rice[J]. International Journal of Molecular Sciences, 2018, 19(10): 2853.
[73]CHERN M S, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18: 511-520.
[74]TANG J Y, ZHU X D, WANG Y Q, et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal, 2011, 66(6): 996-1007.
[75]HU G, RICHTER T E, HULBERT S H, et al. Disease lesion mimicry caused by mutations in the rust resistance gene rp1[J]. The Plant Cell, 1996,8(8): 1367-1376.
[76]TANG X, XIE M, KIM Y J, et al. Overexpression of Pto activates defense responses and confers broad resistance[J]. The Plant cell, 1999, 11(1): 15-29.
[77]QUESADA V, SARMIENTO M R, GONZLEZ B R, et al. Porphobilinogen deaminase deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis[J]. PLoS One, 2013,8(1): e53378.
[78]MANOSALVA P M, BRUCE MYRON, JAN L E. Rice 14-3-3 protein (gf14e) negatively affects cell death and disease resistance[J]. Plant Journal, 2011,68(5): 777-787.
[79]COLL N S, EPPLE P, DANGL J L. Programmed cell death in the plant immune system[J]. Cell Death and Differentiation, 2011, 18(8): 1247-1256.
[80]黄奇娜,杨杨,施勇烽,等. 水稻类病斑表型叶变异研究进展[J]. 中国水稻科学, 2010, 24(2):108-115.
[81]MACH J M, CASTILLO A R, HOOGSTRATEN R, et al. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 771-776.
[82]RATE D N, CUENCA J V, BOWMAN G R , et al. The gain-of-function arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth[J]. Plant Cell, 1999, 11(9):1695-1708.
[83]邱结华,马宁,蒋汉伟,等.水稻类病斑突变体lmm4的鉴定及其基因定位[J]. 中国水稻科学, 2014, 28(4):367-376.
[84]JAMBUNATHAN N, SIANI J M, MCNELLIS T W. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance[J]. The Plant Cell, 2001, 13(10) :2225-2240.
[85]LIU Q, NING Y, ZHANG Y, et al. OsCUL3a Negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. Plant Cell, 2017, 292:345-359.
[86]CUI Y J, PENG Y L, ZHANG Q, et al. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice[J]. The Plant Journal, 2021, 105(4):942-956.
[87]AKIRA A, WONG H L, MASAYUKI F, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4): 465-476.
[88]LI Z, DING B, ZHOU X E, et al. The rice dynamin-related protein OsDRP1E negatively regulates programmed cell death by controlling the release of cytochrome c from mitochondria[J]. PLoS Pathogen, 2017,13(1): e1006157.
[89]LIAO Y, BAI Q, XU P, et al. Mutation in rice abscisic Acid2 results in cell death enhanced disease-resistance, altered seed dormancy and development[J]. Frontiers in Plant Science, 2018,9: 405.
[90]TU B, HU L, CHEN W, et al. Disruption of OsEXO70A1 causes irregular vascular bundles and perturbs mineral nutrient assimilation in rice[J]. Scientific Reports, 2015,5:18609.
[91]KE S, LIU S, LUAN X, et al. Mutation in a putative glycosyltransferase-like gene causes programmed cell death and early leaf senescence in rice[J]. Rice, 2019,12(1): 7.
[92]LEE D, LEE G, KIM B, et al. Identification of a spotted leaf sheath gene involved in early senescence and defense response in rice[J].Front Plant Sci, 2018,9: 1274.
[93]ZHAO J, LIU P, LI C, et al. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice[J].Journal of Genetics and Genomics, 2017,44(2): 107-118.
[94]ZHAO X S, QIU T C, FENG H J, et al. A novel glycine-rich domain protein, OsGRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice[J]. Journal of Experimental Botany, 2021, 72(2):608-622.
[95]BRUGGEMAN Q, RAYNAUD C, BENHAMED M, et al. To die or not to die? Lessons from lesion mimic mutants [J]. Frontiers in Plant Science,2015,6: 24.
[96]DU D, ZHANG C W, XING Y D, et al The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19[J]. Plant Biotechnology Journal, 2021, 9(5):1052-1064.
[97]SHIRSEKAR G S, VEGA S, MIGUEL E, et al. Identification and characterization of suppressor mutants of spl11- mediated cell death in rice[J]. Molecular Plant-microbe Interactions, 2014, 27(6) :528-536.
[98]RAO Y C, JIAO R, WANG S, et al. SPL36 Encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice[J]. Rice, 2021, 14(1): 34.
[99]QIU T C, ZHAO X S, FENG H J, et al. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses[J].Plant Biotechnology Journal, 2021, 19(11): 2277-2290
[100]ZAVALIEV R, MOHAN R, CHEN T Y, et al. Formation of NPR1 condensates promotes cell survival during the plant immune response[J]. Cell, 2020, 182(5) :1093-1108.
[101]WU J H, ZHU C F, PANG J H, et al. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa[J]. The Plant Journal, 2014, 80(6): 1118-1130.
[102]HOANG T V, VO K T X, RAHMAN M M, et al. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice[J]. Plant Science, 2019,289 :110273.
[103]MA H G , LI J , MA L, et al. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance[J]. Molecular Plant, 2021, 14(4): 620-632.
[104]LIU X Q, LI F, TANG J Y, et al. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PLoS One, 2012, 7(11): e50089.
[105]THAO N P, CHEN L T, NAKASHIMA A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. The Plant Cell, 2007, 19(12): 4035-4045.
[106]HU H T, REN D Y, HU J, et al. White and lesion-mimic leaf1, encoding a lumazine synthase, affects ROS balance and chloroplast development in rice[J]. The Plant Journal, 2021, 108(6):1690-1703.
[107]郭明欣,刘佳佳,侯琳琳,等. 植物体内活性氧的产生及清除机制研究进展[J]. 科技视界,2021,4(8):104-106.
[108]黄家华,吕曼芳,李元强,等. 活性氧在植物体中的有益作用[J]. 现代园艺,2019(3):173-174.
[109]GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
[110]PEI Z M, MURATA Y, BENNING G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406(6797):731-734.
[111]YAMADA M, HAN X W, BENFEY P N. RGF1 controls root meristem size through ROS signalling[J]. Nature, 2020,577(7788): 85-88.
[112]LIANG X X, DING P T, LIAN K H, et al. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor[J]. eLife,2016,5: e13568.
[113]ZHANG S, HEYES D J, FENG L, et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis[J]. Nature, 2019, 574(7780):722-725.
[114]唐民科,张均田. 半胱氨酸-天冬氨酸蛋白酶(Caspase)及其在细胞凋亡中的作用[J]. 医学研究通讯,2000(11): 9-13.