[1]吴雅琼,张春红,杨海燕,等.基于代谢组学分析黑莓、黑树莓果实代谢物的差异[J].江苏农业学报,2022,38(03):790-797.[doi:doi:10.3969/j.issn.1000-4440.2022.03.026]
 WU Ya-qiong,ZHANG Chun-hong,YANG Hai-yan,et al.Metabolomics analysis of differentially expressed metabolites in blackberry and black raspberry fruits[J].,2022,38(03):790-797.[doi:doi:10.3969/j.issn.1000-4440.2022.03.026]
点击复制

基于代谢组学分析黑莓、黑树莓果实代谢物的差异()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年03期
页码:
790-797
栏目:
园艺
出版日期:
2022-06-30

文章信息/Info

Title:
Metabolomics analysis of differentially expressed metabolites in blackberry and black raspberry fruits
作者:
吴雅琼1张春红1杨海燕1闾连飞1李维林2吴文龙1
(1.江苏省中国科学院植物研究所,江苏南京210014;2.南京林业大学南方现代林业协同创新中心,江苏南京210037)
Author(s):
WU Ya-qiong1ZHANG Chun-hong1YANG Hai-yan1LYU Lian-fei1LI Wei-lin2WU Wen-long1
(1.Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;2.Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)
关键词:
黑莓黑树莓黄酮差异代谢物合成通路
Keywords:
blackberryblack raspberryflavonoiddifferentially expressed metabolitesbiosynthesis pathway
分类号:
S663.9
DOI:
doi:10.3969/j.issn.1000-4440.2022.03.026
文献标志码:
A
摘要:
为了探究黑莓、黑树莓成熟果实中主要代谢物的差异,利用液相色谱-质谱技术对其进行比较分析。结果表明,在正离子、负离子模式下分别存在1 288个、971个具有显著表达差异的代谢物,通过KEGG数据平台分析发现,代谢通路是富集差异表达代谢物数量最多的(共104个),其次是次生代谢物合成通路(有65个差异表达代谢物)。此外,黄酮和黄酮醇生物合成通路也是主要差异代谢物显著富集的代谢途径之一,包含11个差异代谢物。而在花色苷合成通路上,与黑莓果实相比,黑树莓果实中有6个代谢物表达量下调,而矢车菊素-3-O-葡萄糖苷代谢物表达量上调。在异黄酮合成通路中,与黑树莓果实相比,黑莓果实中的(S)-柚皮素相对表达量增加了2.7倍。研究结果为更好地了解黑树莓、黑莓果实代谢物的异同和高效利用悬钩子属果实中黄酮、花色苷等次生代谢物提供理论依据。
Abstract:
To explore the differences of main metabolites between mature fruits of black raspberry and blackberry, liquid chromatography-mass spectrometry (LC-MS) was used to compare and analyze. The results showed that there were 1 288 and 971 metabolites with significant differences in positive and negative ion modes, respectively. Through the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) data platform, it was found that metabolic pathways were the most abundant (104 differentially expressed metabolites), followed by secondary biosynthesis (65 differentially expressed metabolites). In addition, flavone and flavonol biosynthesis was also one of the major metabolic pathways with significant enrichment, including 11 differentially expressed metabolites. In the anthocyanin biosynthesis pathway, compared with the mature fruit of blackberry, there were six differentially expressed metabolites down-regulated in the mature fruit of black raspberry. The expression level of cyanidin-3-o-glucoside metabolites was up-regulated in the black raspberry. In the isoflavonoid biosynthesis pathway, the relative expression of (S)-naringenin in blackberry fruit was 3.7 times as much as that in black raspberry. The results can provide a theoretical basis for better understanding the similarities and differences of metabolites in black raspberry and blackberry fruits, and efficient utilization of secondary metabolites such as flavonoids and anthocyanins in Rubus fruits.

参考文献/References:

[1]THOLE V, BASSARD J E, RAMREZ-GONZLEZ R, et al. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics[J]. BMC Genomics, 2019, 20(1): 995.
[2]WU Y Q, ZHANG C H, YANG H Y, et al. Selection and validation of candidate reference genes for gene expression analysis by RT-qPCR in Rubus[J]. International Journal of Molecular Sciences, 2021, 22(19): 10533.
[3]FOSTER T M, BASSIL N V, DOSSETT M, et al. Genetic and genomic resources for Rubus breeding: a roadmap for the future[J]. Horticulture Research, 2019(1): 260-268.
[4]WU Y Q, ZHANG C H, HUANG Z J, et al. The color difference of rubus fruits is closely related to the composition of flavonoids including anthocyanins[J]. LWT, 2021, 149: 111825.
[5]ZURN J D, DRISKILL M, JUNG S, et al. A Rosaceae family-level approach to identify loci influencing soluble solids content in blackberry for DNA-informed breeding[J]. G3-Genes Genomes Genetics, 2020, 10(10): 3729-3740.
[6]KRZEPILKO A, PRAZAK R, SWIECILO A. Chemical composition, antioxidant and antimicrobial activity of raspberry, blackberry and raspberry-blackberry hybrid leaf buds[J]. Molecules, 2021, 26(2): 327.
[7]WU Q, ZHAO X, CHEN C, et al. Metabolite profiling and classification of developing Styrax tonkinensis kernels[J]. Metabolites, 2020, 10(1): 21.
[8]张舒,王长远,冯玉超,等. 气相色谱-质谱联用代谢组学技术分析不同产地稻米代谢物[J]. 食品科学, 2021, 42(8): 206-213.
[9]刘龙桀,吴可心,刁云飞,等. 基于GC-MS分析东北红豆杉野生种与栽培种的代谢差异[J]. 植物研究, 2021,41(5):798-806.
[10]高静怡,马浩,刘东贺,等. 非靶向代谢组学对砂梨水心病不同代谢物质的差异分析[J]. 分子植物育种, 2021, 19(24):8297-8304.
[11]吴文龙,李维林,闾连飞,等. 黑莓引种栽培与利用[M]. 南京:江苏科学技术出版社, 2010: 1-8.
[12]WECKWERTH W. Metabolomics in systems biology[J]. Annual Review of Plant Biology, 2003,54: 669-689.
[13]路正禹, 王 堽, 李任任, 等. 基于组学技术探究甜菜耐盐机理研究进展[J]. 中国农学通报, 2021, 37(15): 92-98.
[14]KIM S, KIM J, KIM N, et al. Metabolomic elucidation of the effect of sucrose on the secondary metabolite profiles in Melissa officinalis by ultraperformance liquid chromatography-mass spectrometry[J]. ACS Omega, 2020, 5: 33186-33195.
[15]YUE S J, ZHAO D, PENG C X, et al. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet[J]. Food & Function, 2019, 10(11): 7063-7080.
[16]KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2008, 36: 480-484.
[17]张改君,苗静,郭丽颖,等. 多组学联用在中药作用机制研究中的应用[J]. 中草药, 2021, 52(10): 3112-3120.
[18]FAN M C, LIAN W J, LI T T, et al. Metabolomics approach reveals discriminatory metabolites associating with the blue pigments from Vaccinium bracteatum thunb. leaves at different growth stages[J]. Industrial Crops & Products, 2020, 147: 112252.
[19]FU A Z, WANG Q, MU J L, et al. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development[J]. Horticulture Research, 2021, 8(1): 35.
[20]SCOSSA F, BROTMAN Y, ABREU L F, et al. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism[J]. Plant Science, 2016, 242(S1): 47-64.
[21]WU Y Q, GUO J, ZHOU Q, et al. De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba[J]. Industrial Crops & Products, 2018, 124: 226-235.
[22]WU Y Q, ZHANG C H, WU W L, et al. Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit ripening in black raspberry (Rubus occidentalis L.)[J]. Journal of Berry Research, 2021, 11(2): 301-315.
[23]吴林,张强,王颖,等. 中国树莓科学研究和产业发展的回顾与展望[J]. 吉林农业大学学报, 2021, 43(3): 265-274.
[24]蔡成林,黄庭海,张青峰. 红莓和黑莓叶黄酮类化合物抗氧化活性的比较研究[J]. 生物化工, 2020, 6(6): 33-35.
[25]LIU H, LI H F, GU J Z, et al. Identification of the candidate proteins related to oleic acid accumulation during peanut (Arachis hypogaea L.) seed development through comparative proteome analysis[J]. International Journal of Molecular Sciences, 2018, 19(4): 1235.
[26]LI X R, PEI G S, LIU L S, et al. Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution[J]. Bioresource Technology, 2017, 235: 87-95.
[27]唐晓姝,胡博,陈雪梅,等. 6种小型浆果营养成分及DPPH自由基清除活性比较[J].江苏农业科学,2021,49(20):182-187.
[28]黄佳楠,管福琴,李林蔚,等. 黑果枸杞果实提取物中花色苷对酪氨酸酶活性的抑制作用初探[J].植物资源与环境学报,2020,29(3):75-77.
[29]戴意强,吴寒,单成俊,等. 蓝莓酶解工艺优化研究[J].江苏农业科学,2020,48(17):219-224.
[30]延海莹,乔乐克,张京良,等. 树莓营养及活性研究进展[J]. 食品工业, 2018, 39(7): 281-284.
[31]赵慧芳,吴文龙,李维林,等. 黑莓Hull、Chester果实生长及品质形成过程的分析[J]. 食品安全质量检测学报, 2015, 6(8): 3199-3204.

备注/Memo

备注/Memo:
收稿日期:2021-10-17基金项目:国家自然科学基金项目(32101566);江苏省自然科学基金青年基金项目(BK20210165);江苏省中国科学院植物研究所博士人才科研启动基金项目(JIBTF202105)作者简介:吴雅琼(1992-),女,江苏南京人,博士,助理研究员,主要从事小浆果遗传育种、果实营养品质和基因组学方面的研究。(E-mail)ya_qiong@126.com通讯作者:李维林,(E-mail)wlli@njfu.edu.cn;吴文龙,(E-mail)1964wwl@163.com
更新日期/Last Update: 2022-07-07