[1]时丕彪,王德领,蒋润枝,等.藜麦ZF-HD转录因子的全基因组鉴定及其对盐胁迫的响应分析[J].江苏农业学报,2022,38(02):304-312.[doi:doi:10.3969/j.issn.1000-4440.2022.02.003]
 SHI Pi-biao,WANG De-ling,JIANG Run-zhi,et al.Genome-wide identification of ZF-HD transcription factors and expression analysis of response to salt stress in quinoa[J].,2022,38(02):304-312.[doi:doi:10.3969/j.issn.1000-4440.2022.02.003]
点击复制

藜麦ZF-HD转录因子的全基因组鉴定及其对盐胁迫的响应分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
304-312
栏目:
遗传育种·生理生化
出版日期:
2022-04-30

文章信息/Info

Title:
Genome-wide identification of ZF-HD transcription factors and expression analysis of response to salt stress in quinoa
作者:
时丕彪王德领蒋润枝李斌晏军方迪闫凯旋顾闽峰
(盐城市新洋农业试验站,江苏盐城224049)
Author(s):
SHI Pi-biaoWANG De-lingJIANG Run-zhiLI BinYAN JunFANG DiYAN Kai-xuanGU Min-feng
(Xinyang Agricultural Experiment Station of Yancheng City, Yancheng 224049, China)
关键词:
藜麦锌指同源异型结构域(ZF-HD)全基因组盐胁迫基因表达
Keywords:
quinoazinc finger-homeodomain (ZF-HD)genome-widesalt stressgene expression
分类号:
S512.9
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.003
文献标志码:
A
摘要:
以藜麦的高质量基因组为参考,对藜麦锌指同源异型结构域(ZF-HD)转录因子基因CqZF-HD进行全基因组鉴定,并利用生物信息学方法对其编码的蛋白质理化性质、二级结构、亚细胞定位、保守结构域以及基因结构、系统进化关系进行了分析。同时,利用前期转录组测序结果分析了CqZF-HD家族基因在盐胁迫下的表达模式。结果表明,在藜麦中共鉴定出21个ZF-HD转录因子,大部分定位在细胞质,二级结构以无规则卷曲为主,氨基酸序列长度68~284 aa,相对分子质量7.54×103~30.20×103,理论等电点6.01~9.54;每个ZF-HD蛋白都含有ZF或HD保守结构域,系统进化树将其划分为5个亚家族。盐处理下表达分析结果显示,11个CqZF-HD基因响应藜麦盐胁迫,其中8个基因呈上调表达,3个基因呈下调表达,说明ZF-HD家族基因在参与藜麦盐胁迫中发挥着不同的作用。
Abstract:
Zinc finger-homeodomain (ZF-HD) proteins are plant-specific transcription factors that play important roles in plant growth, development and various stress responses. In this study, the CqZF-HD gene was identified at genome-wide level with the high-quality quinoa genome as a reference. The physicochemical properties, secondary structure, subcellular localization and conserved domains of CqZF-HDs, phylogenetic relationship and gene structure were analyzed by bioinformatics method. Meanwhile, the expression pattern of CqZF-HD family genes under salt stress was also analyzed by preliminary transcriptome sequencing results. The results showed that 21 ZF-HD transcription factors were identified in quinoa, most of which were located in the cytoplasm, the secondary structure was dominated by random coils, amino acid sequence length was 68-284 aa, relative molecular weight was 7.54×103-30.20×103, and theoretical isoelectric point was 6.01-9.54. All of the ZF-HDs were divided into five subfamilies by phylogenetic tree analysis, and each member contained conserved domains ZF or HD. The expression analysis under salt treatment showed that 11 CqZF-HDs responded to salt stress in quinoa, eight genes were up-regulated, and three genes were down-regulated. In conclusion, ZF-HD family genes play different roles in response to salt stress in quinoa.

参考文献/References:

[1]TAN Q K, IRISH V F. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development [J]. Plant Physiology, 2006, 140: 1095-1108.
[2]LIU H, YANG Y, ZHANG L S. Zinc finger-homeodomain transcriptional factors (ZF-HDs) in wheat (Triticum aestivum L.): identification, evolution, expression analysis and response to abiotic stresses [J]. Plants, 2021, 10: 593.
[3]HU W, DEPAMPHILIS C W, MA H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families [J]. Journal of Integrative Plant Biology, 2008, 50: 1031-1045.
[4]WANG W, WU P, LI Y, et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage [J]. Molecular Genetics and Genomics, 2016, 291: 1451-1464.
[5]BHATTACHARJEE A, GHANGAL R, GARG R, et al. Genome-wide analysis of homeobox gene family in legumes: Identification, gene duplication and expression profiling [J]. PLoS One, 2015, 10: e0119198.
[6]KRISHNA S S, MAJUMDAR I, GRISHIN N V. Structural classification of zinc fingers: Survey and summary [J]. Nucleic Acids Research, 2003, 31: 532-550.
[7]MACKAY J P, CROSSLEY M. Zinc fingers are sticking together [J]. Trends in Biochemical Sciences, 1998, 23: 1-4.
[8]WINDHOVEL A, HEIN I, DABROWA R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia [J]. Plant Molecular Biology, 2001, 45: 201-214.
[9]JRGENSEN J E, GRNLUND M, PALLISGAARD N, et al. A new class of plant homeobox genes is expressed in specific regions of determinate symbiotic root nodules [J]. Plant Molecular Biology, 1999, 40: 65-77.
[10]KHATUN K, NATH U K, ROBIN A, et al. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato [J]. BMC Genomics, 2017, 18: 695.
[11]ABDULLAH M, CHENG X, CAO Y, et al. Zinc finger-homeodomain transcriptional factors (ZHDs) in upland cotton (Gossypium hirsutum): Genome-wide identification and expression analysis in fiber development [J]. Frontiers in Genetics, 2018, 9: 357.
[12]LIU M, WANG X, SUN W, et al. Genome-wide investigation of the ZF-HD gene family in Tartary buckwheat (Fagopyrum tataricum) [J]. BMC Plant Biology, 2019, 19: 248.
[13]TRAN L S, NAKASHIMA K, SAKUMA Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis [J]. Plant Journal, 2007, 49: 46-63.
[14]WANG L, HUA D, HE J, et al. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis [J]. PLoS Genetics, 2011, 7: e1002172.
[15]XU Y, WANG Y, LONG Q, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice [J]. Planta, 2014, 239: 803-816.
[16]YOON J, CHO L H, YANG W, et al. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis [J]. Journal of Experimental Botany, 2020, 71(18): 5348-5364.
[17]WANG H, YIN X, LI X, et al. Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L.) zinc finger-homeodomain gene family [J]. International Journal of Molecular Sciences, 2014, 15: 5730-5748.
[18]JARVIS D E, HO Y S, LIGHTFOOT D J, et al. The genome of Chenopodium quinoa [J]. Nature, 2017, 542: 307-312.
[19]LIU W, XIE Y, MA J, et al. IBS: an illustrator for the presentation and visualization of biological sequences [J]. Bioinformatics, 2015, 31(20): 3359-3361.
[20]THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.
[21]TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[22]HU L, LI H, CHEN L, et al. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress [J]. BMC Genomics, 2015, 16: 575.
[23]DENG W, WANG Y, LIU Z, et al. HemI: a toolkit for illustrating heatmaps [J]. PLoS One, 2014, 9(11): e111988.
[24]SHI P, GU M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress [J]. BMC Plant Biology, 2020, 20: 568.
[25]HANIN M, EBEL C, NGOM M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding [J]. Frontiers in Plant Science, 2016, 7: 1787.
[26]JULKOWSKA M M, KOEVOETS I T, MOL S, et al. Genetic components of root architecture remodeling in response to salt stress [J]. Plant Cell, 2017, 29(12): 3198-3213.
[27]ROZEMA J, FLOWERS T. Crops for a salinized world [J]. Science, 2008, 322: 1478-1480.
[28]GUIXIA X, CHUNCE G, HONGYAN S, et al. Divergence of duplicate genes in exon-intron structure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): 1187-1192.
[29]FILIZ E, TOMBULOLU H. Genome-wide distribution of superoxide dismutase (SOD) gene families in Sorghum bicolor [J]. Turkish Journal of Biology, 2015, 39(1): 49-59.
[30]JIN Z, CHANDRASEKARAN U, LIU A. Genome-wide analysis of the Dof transcription factors in castor bean (Ricinus communis L.) [J]. Genes & Genomics, 2014, 36(4): 527-537.
[31]ZHU J K. Genetic analysis of plant salt tolerance using Arabidopsis [J]. Plant Physiology, 2000, 124: 941-948.
[32]APSE M P, BLUMWALD E. Engineering salt tolerance in plants [J]. Current Opinion in Biotechnology, 2002, 13: 146-150.
[33]梁国旺,李增强,周步进,等. 红麻谷胱甘肽还原酶基因(HcGR)的克隆及盐胁迫下表达分析[J].南方农业学报,2020,51(10):2412-2419.
[34]张恒,刘晓婷,陈嵩,等. 盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J]. 南京林业大学学报(自然科学版),2020,44(2): 59-66.
[35]JAMIL A, RIZA S, ASHRAF M, et al. Gene expression profiling of plants under salt stress [J]. Critical Reviews in Plant Sciences, 2011, 30: 435-458.

相似文献/References:

[1]时丕彪,洪立洲,王军,等.藜麦CqCIPK7基因的克隆与表达分析[J].江苏农业学报,2020,(04):1068.[doi:doi:10.3969/j.issn.1000-4440.2020.04.037]
 SHI Pi-biao,HONG Li-zhou,WANG Jun,et al.Cloning and expression analysis of CqCIPK7 gene in quinoa[J].,2020,(02):1068.[doi:doi:10.3969/j.issn.1000-4440.2020.04.037]
[2]刘俊娜,孔治有,张平,等.不同播期藜麦主要营养及抗氧化成分分析[J].江苏农业学报,2020,(05):1082.[doi:doi:10.3969/j.issn.1000-4440.2020.05.002]
 LIU Jun-na,KONG Zhi-you,ZHANG Ping,et al.Analysis on main nutrients and antioxidant components of quinoa at different sowing dates[J].,2020,(02):1082.[doi:doi:10.3969/j.issn.1000-4440.2020.05.002]
[3]马思宇,刘瑞香,郭占斌,等.藜麦光合特性及非结构性碳水化合物含量与产量的关系[J].江苏农业学报,2021,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2021.05.003]
 MA Si-yu,LIU Rui-xiang,GUO Zhan-bin,et al.Photosynthetic characteristics and the relationship between non-structural carbohydrates content and yield of quinoa[J].,2021,(02):1378.[doi:doi:10.3969/j.issn.1000-4440.2021.05.003]

备注/Memo

备注/Memo:
收稿日期:2021-07-11基金项目:江苏省农业科技自主创新基金项目[CX(19)3116];江苏现代农业(蔬菜)产业技术体系(盐城)推广示范基地项目[JATS(2020)205]作者简介:时丕彪(1989-),男,山东菏泽人,助理研究员,主要从事农作物新品种选育及分子育种研究。(E-mail)1032175660@qq.com通讯作者:顾闽峰,(E-mail)ycgmf@126.com
更新日期/Last Update: 2022-05-07