参考文献/References:
[1]YOSHIDA S. Fundamentals of rice crop science[M].Laguna:Philippines,1981.
[2]丁旗. 低温天气对水稻育苗的影响及综合预防[J].吉林农业, 2017(15): 99.
[3]孙韵雅,陈佳,王悦,等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J].草地学报,2020,28(5):1203-1215.
[4]姜焕焕,王通,陈娜,等. 根际促生菌提高植物抗盐碱性的研究进展[J].生物技术通报,2019,35(10):189-197.
[5]纪超,王晓辉,刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J].生物技术通报,2020,36(4):131-143.
[6]SUBRAMANIAN P, KRISHNAMOORTHY R, CHANRATANA M. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress[J].Plant Physiol Biochem,2015,89:18-23.
[7]TURAN M, GULLUCE M, CAKMAK R, et al. Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley[J].J Plant Nutr,2013, 36:731-748.
[8]ALAMI Y, ACHOUAK W, MAROL C, et al. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots[J].Appl Environ Microbiol,2000,66, 3393-3398.
[9]ASHRAF M, HASNAIN S, BERGE O, et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J].Biol Fertil Soils,2004, 40, 157-162.
[10]SUN L, YANG Y, LEI P, et al. Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Pantoea alhagi NX-11[J].Carbohydrate Polymers, 2021, 261:117872.
[11]SUN L, YANG Y, WANG R, et al. Effects of exopolysaccharide derived from Pantoea alhagi NX-11 on drought resistance of rice and its efficient fermentation preparation[J].International Journal of Biological Macromolecules, 2020, 162(9):46-55.
[12]赵海新. 碱胁迫对水稻叶绿素及叶片脯氨酸和可溶性糖含量的影响[J].作物杂志, 2020(1):98-102.
[13]李仕友. 植物富集铀镉特征及其响应机制试验研究[M]. 衡阳:南华大学,2019.
[14]XIA X J, WANG Y J, ZHOU Y H, et al. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber[J]. Plant Physiology, 2009, 150(2): 801-814.
[15]DROGE W. Free radicals in the physiological control of cell function[J].Physiological Reviews, 2002,82:47-95.
[16]PENG L, XU Z Q, DING Y, et al. Effect of poly(γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings(Brassica napus L.) under cold stress[J].J Agr Food Chem,2015,63:10399-10406.
[17]UR I, SKOCZOWSKI A, NIEMCZYK E, et al. Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus [J]. Acta Physiologiae Plantarum, 2002, 24(1): 3-10.
[18]BALTRUSCHAT H, FODOR J, HARRACH B D, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants [J]. The New Phytologist, 2008, 180(2): 501-510.
[19]千春录,朱芹,高姗,等. 外源褪黑素处理对采后水蜜桃冷藏品质及冷害发生的影响[J].江苏农业学报,2020,36(3):702-708.
[20]马娟娟,赵斌,陈颖,等. 4个北美冬青品种苗对低温胁迫的生理响应及抗寒性比较[J].南京林业大学学报(自然科学版),2020,44(5):34-40.
[21]张典利,孟臻,亓文哲,等. 植物根际促生菌的研究与应用现状[J].世界农药,2018,40(6):37-43,50.
[22]麦靖雯,黎瑞君,张巨明. 植物根际促生菌研究综述[J].现代农业科技,2018(12):179-180,183.
[23]官宇,余伟,辜运富,等. PGPR菌剂对砷胁迫下蜈蚣草根际微生物群落的影响[J].江苏农业科学,2020,48(19):275-280.
[24]韦江璐,覃英,谢显秋,等. 促生菌对土壤养分、酶活性及细菌群落功能多样性的影响[J].南方农业学报,2020, 51(10):2348-2357.
[25]纪超,王晓辉,刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J].生物技术通报,2020,36(4):131-143.
[26]UPADHYAY S K, SINGH J S, SINGH D P,et al. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition[J]. Pedosphere,2011, 21:214-222.
[27]NANDAL K, SEHRAWAT A R, YADAV A S, et al. High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. ( Cajanus )[J]. Microbiological Research,2005,160(4):367-373.
[28]PULSAWAT W,LEKSAWASDI P, ROGERS L, et al. Anions effects on biosorption of Mn(Ⅱ) by extracellular polymeric substance (EPS) from Rhizobium etli[J]. Biotechnology Letters,2003,25(15):1267-1270.
[29]KASOTIA A, VARMA A, TUTEJA N, et al. Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas-mediated expression of high affinity K+ transporter (HKT1) gene[J]. Current Science,2016,111(12):1961-1967.
[30]KHAN N, BANO A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS One,2019,14(9):1267-1270.
[31]MISHRA P K, BISHT S C, RUWARI P, et al. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas[J]. Archives of Microbiology,2011,193(7):497-513.
[32]ZUBAIR M, HANIF A, FARZAND A, et al. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat[J]. Microorganisms,2019,7(9):337.
[33]UPADHYAY S K, SINGH J S, SINGH D P. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity Condition[J]. Pedosphere,2011,21(2):214-222.
[34]ASHRAF, M, HASNAIN S, BERGE O, et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J]. Biology and Fertility of Soils,2004,40(3):157-162.