[1]殷剑美,张铅,蒋璐,等.山药块茎发育阶段基因共表达网络构建及阶段特异性分析[J].江苏农业学报,2022,38(01):30-38.[doi:doi:10.3969/j.issn.1000-4440.2022.01.004]
 YIN Jian-mei,ZHANG Qian,JIANG Lu,et al.Stage-specific and weighted gene co-expression network analyses of yam (Dioscorea alata L.) tuber growth[J].,2022,38(01):30-38.[doi:doi:10.3969/j.issn.1000-4440.2022.01.004]
点击复制

山药块茎发育阶段基因共表达网络构建及阶段特异性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年01期
页码:
30-38
栏目:
遗传育种·生理生化
出版日期:
2022-02-28

文章信息/Info

Title:
Stage-specific and weighted gene co-expression network analyses of yam (Dioscorea alata L.) tuber growth
作者:
殷剑美张铅蒋璐张培通
(江苏省农业科学院经济作物研究所,江苏南京210014)
Author(s):
YIN Jian-meiZHANG QianJIANG LuZHANG Pei-tong
(Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
山药转录组测序阶段特异性基因基因共表达网络
Keywords:
yamtranscriptome sequencingstage-specific geneweighted gene co-expression network analysis
分类号:
S632.101
DOI:
doi:10.3969/j.issn.1000-4440.2022.01.004
文献标志码:
A
摘要:
山药是一种药食同源作物,块茎是其主要产品器官,其发育机制对于山药产量和品质提升相关育种有着重要的指导作用。以不同生长阶段(块茎膨大第1 d、第11 d、第21 d、第31 d、第41 d、第51 d,T1~T6)的山药块茎为材料进行转录组测序,经从头(de novo)组装后获得42 042个unigenes,利用七大数据库进行注释,鉴定后发现山药块茎形成过程中涉及大量基因,包括激素合成、信号转导等相关基因。阶段特异性分析结果表明,块茎形成初始阶段为块茎发育的关键时期;加权基因共表达网络分析结果表明,在山药块茎形成初期及后期,激素相关基因的表达特别活跃,脱落酸(ABA)、茉莉酸(JA)是山药块茎生长发育的重要激素。研究结果为进一步研究山药块茎膨大分子机制奠定了基础。
Abstract:
Chinese yam is a crop with hamology of medicine and food, and tuber is its main product organ. The development mechanism of tubers plays an important guiding role in the breeding related to the improvement of yield and quality of yam. Based on transcriptome sequencing of tubers at different growth stages (T1-T6), after de novo assembly, 42 042 unigenes were obtained and annotated using seven databases. After identification, it was found that a large number of genes were involved in the process of tuber formation, including hormone synthesis-related genes, signal transduction-related genes, and so on. The results of stage specificity analysis showed that the initial stage of tuber formation was a critical period. The results based on the weighted gene co-expression network analysis (WGCNA) showed that the expression of hormone-related genes was very active in the early and late stages of tuber growth. Abscisic acid (ABA) and jasmonic acid (JA) were important hormones for the growth and development of yam tubers. The results lay a foundation for further study on the molecular mechanism of tuber enlargement of yam.

参考文献/References:

[1]韦本辉.中国淮山药栽培[M]. 北京:中国农业出版社,2013:2-4.
[2]OSELEBE H O, OKPORIE E O. Evaluation of water yam (Dioscorea alata L.) genotypes for yield and yield components in Abakaliki agro-ecological zone of Nigeria[J]. Agro-Science, 2008, 7(3): 179-185.
[3]LE B H, CHENG C, BUI A Q, et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed specific transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8063-8070.
[4]BELMONTE M F, KIRKBRIDE R C, STONE S L, et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5): E435-E444.
[5]ZHOU T, LUO X J, YU C N, et al. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species[J]. BMC Plant Biology, 2019, 19(1): 33-42.
[6]SUN Q, ZHOU G F, CAI Y F, et al. Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing[J]. BMC Plant Biology, 2012, 12: 53.
[7]ROUMELIOTIS E, VISSER R G F, BACHEM C W B. A crosstalk of auxin and GA during tuber development[J]. Plant Signaling & Behavior, 2012, 7(10): 1360-1363.
[8]SARKER D, PANDEY S K, SHARMA S. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro[J]. Plant Cell, Tissue and Organ Culture, 2006, 87(3): 285-295.
[9]张铅,蒋璐,张培通,等. 长江中下游地区参薯块茎发育动态特征分析[J]. 植物生理学报,2020,56(12):2736-2744.
[10]GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29: 644-652.
[11]TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3): 562-578.
[12]ZHAN J P, THAKARE D, MA C, et al. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation[J]. The Plant Cell, 2015, 27(3): 513-531.
[13]LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9(1): 559.
[14]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ctmethod[J]. Methods, 2001, 25(4): 402-408.
[15]KLOOSTERMAN B, VORST O, HALL R D, et al. Tuber on a chip: differential gene expression during potato tuber development[J]. Plant Biotechnology Journal, 2005, 3(5): 505-519.
[16]PAWSON T, SCOTT J D. Signaling through scaffold, anchoring, and adaptor proteins[J]. Science, 1997, 278(5346): 2075-2080.
[17]SHU K, LIU X D, XIE Q, et al. Two faces of one seed: hormonal regulation of dormancy and germination[J]. Molecular Plant, 2016, 9(1): 34-45.
[18]SUN T P. The molecular mechanism and evolution of the review GAGID1-DELLA signaling module in plants[J]. Current Biology, 2011, 21: 338-345.
[19]TYLER L, THOMAS S G, HU J H, et al. DELLA proteins and gibberellin regulated seed germination and floral development in Arabidopsis[J]. Plant Physiology, 2004, 135: 1008-1019.
[20]PENG J, RICHARDS D E, HARTLEY N M, et al. ‘Green Revolution’ genes encode mutant gibberellin response modu lators[J]. Nature, 1999, 400: 256-261.
[21]FU X D, RICHARDS D E, AIT-AIT T, et al. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor[J]. Plant Cell, 2002, 14(12): 3191-3200.
[22]IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J]. Plant Cell, 2001, 13: 999-1010.
[23]IUCHI S, KOBAYASHI M, TAJI T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology, 2010, 27(4): 325-333.
[24]SCHWARZ N, ARMBRUSTER U, LVEN T, et al. Tissue-specific accumula tion and regulation of zeaxanthin epoxidase in Arabidopsi reflect the multiple functions of the enzyme in plastids[J]. Plant Cell Physiology, 2015, 56(2): 346-357.
[25]KROCHKO J E, ABRAMS G D, LOEWEN M K, et al. (+)-Abscisic acid 8’-hydroxylase is a cytochrome P450 monooxygenase[J]. Plant Physiol, 1998, 118(3): 849-860.
[26]WANG Z Q, XU Y J, CHEN T T, et al. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling[J]. Planta, 2015, 241(5): 1091-1107.
[27]PAN Z Q, CAMARA B, GARDNER H W, et al. Aspirin inhibition and acetylation of the plant cytochrome P450, allene oxide synthase, resembles that of animal prostaglandin endoperoxide H synthase[J]. The Journal of Biological Chemistry, 1998, 273(17): 18139-18145.
[28]CAO F Y, DEFALCO T A, MOEDER W, et al. Arabidopsis ETHYLENE RESPONSE FACTOR 8(ERF8) has dual functions in ABA signaling and immunity[J]. BMC Plant Biol, 2018, 18 (1): 211.
[29]LIU K, LI Y H, CHEN X N, et al. ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in Arabidopsis[J]. Journal of Experimental Botany, 2018, 69 (16): 3933-3947.
[30]JIN Y, PAN W Y, ZHENG X F, et al. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Molecular Biology, 2018, 98(1/2): 51-65.
[31]XIE Z, ZHANG Z L, ZOU X L, et al. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells[J]. The Plant Journal, 2006, 46(2): 231-242.
[32]FU J Y, LIU Q, WANG C, et al. Zmwrky79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response[J]. Journal of Experimental Botany, 2018, 69(3): 497-510.

相似文献/References:

[1]冯娇,王武,侯旭东,等.基于转录组测序技术探究GA3和CPPU抑制葡萄果锈产生的机理[J].江苏农业学报,2017,(04):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
 FENG Jiao,WANG Wu,HOU Xu-dong,et al.Underlying mechanism of GA3 and CPPU inhibiting grape fruit russet discovered based on transcriptome sequencing[J].,2017,(01):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
[2]李隐侠,冯小品,张莉,等.热应激前后湖羊下丘脑差异表达新基因的筛选与注释[J].江苏农业学报,2019,(02):363.[doi:doi:10.3969/j.issn.1000-4440.2019.02.017]
 LI Yin-xia,FENG Xiao-pin,ZHANG Li,et al.Screening and annotation of novel genes differentially expressed in hypothalamus before and after heat stress in Hu sheep[J].,2019,(01):363.[doi:doi:10.3969/j.issn.1000-4440.2019.02.017]
[3]王亚丽,陈煜东,王益军.高世代回交玉米矮秆种质的转录组分析[J].江苏农业学报,2021,(02):280.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
 WANG Ya-li,CHEN Yu-dong,WANG Yi-jun.Transcriptome analysis on the advanced backcross population of maize dwarf germplasm[J].,2021,(01):280.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
[4]徐鹿,罗光华,金瑜剑,等.转录组测序分析毒死蜱与醚菊酯混配对二化螟毒杀的增效机制[J].江苏农业学报,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
 XU Lu,LUO Guang-hua,JIN Yu-jian,et al.Study on the synergistic mechanism of chlorpyrifos and ethofenprox mixture in poisoning Chilo suppressalis based on transcriptome sequencing[J].,2021,(01):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
[5]后猛,李臣,宋炜涵,等.紫肉甘薯及其突变体花青素积累差异的比较转录组分析[J].江苏农业学报,2022,38(02):313.[doi:doi:10.3969/j.issn.1000-4440.2022.02.004]
 KOU Meng,LI Chen,SONG Wei-han,et al.Comparative transcriptome analysis on anthocyanin accumulation differences in purple-fleshed sweetpotatoes and their mutants[J].,2022,38(01):313.[doi:doi:10.3969/j.issn.1000-4440.2022.02.004]
[6]段修军,孙国波,张蕾,等.基于RNA-Seq鉴定黑羽番鸭肉质风味差异的候选基因[J].江苏农业学报,2022,38(03):739.[doi:doi:10.3969/j.issn.1000-4440.2022.03.020]
 DUAN Xiu-jun,SUN Guo-bo,ZHANG Lei,et al.Identification of candidate genes related to meat flavor in black Muscovy duck based on RNA-Seq[J].,2022,38(01):739.[doi:doi:10.3969/j.issn.1000-4440.2022.03.020]
[7]陈亚辉,张师瑒,杨庆山,等.多枝柽柳叶片响应NaCl胁迫的转录组分析[J].江苏农业学报,2022,38(05):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
 CHEN Ya-hui,ZHANG Shi-yang,YANG Qing-shan,et al.Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress[J].,2022,38(01):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
[8]朱淑斌,徐盼,周春宝,等.基于RNA-Seq技术筛选姜曲海猪子宫和卵巢发育相关基因[J].江苏农业学报,2024,(01):130.[doi:doi:10.3969/j.issn.1000-4440.2024.01.014]
 ZHU Shu-bin,XU Pan,ZHOU Chun-bao,et al.Screening of functional genes associated with uterus and ovary development in Jiangquhai pig based on RNA-Seq technology[J].,2024,(01):130.[doi:doi:10.3969/j.issn.1000-4440.2024.01.014]

备注/Memo

备注/Memo:
收稿日期:2021-05-13基金项目:国家现代农业产业技术体系资助项目(CARS-21)作者简介:殷剑美(1977-),女,江苏丹阳人,博士,研究员,主要从事药食同源类作物研究。(E-mail)602604402@qq.com。张铅为共同第一作者。通讯作者:张培通,(E-mail)1196764929@qq.comn
更新日期/Last Update: 2022-03-04