参考文献/References:
[1]丁丽敏,夏兆飞. 犬猫营养需要[M].2版.北京:中国农业大学出版社,2017.
[2]FUKADA T, YAMASAKI S, NISHIDA K.,et al. Zinc homeostasisand signaling in health and diseases[J]. J Biol Inorg Chem, 2011, 16:1123-1134.
[3]VALLEE B L, AULD D S. Zinc coordination, function, and structure of zinc enzymes and other proteins[J]. Biochemistry, 1990, 29:5647-5659.
[4]赵治平,黄克和,任志华. 富硒锌益生菌对犬的全血硒锌含量与抗氧化能力和肠道菌群的影响[J].营养学报,2009,31(2):159-163.
[5]SODERBERG T A,SUNZEL B,HOLM S, et al. Antibacterial effect of zinc oxide in vitro[J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1990, 24(3): 193-197.
[6]YAO J,LIU Y,LING H, et al. The effect of zinc(II) on the growth of E-coli studied by microcalorimetry[J]. Journal of Thermal Analysis and Calorimetry, 2005, 79(1): 39-43.
[7]FENG Y,MIN L,ZHANG W, et al. Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites[J]. Front Microbiol, 2017, 8: 992.
[8]TANG Z G, WEN C,WANG L C, et al. Effects of zinc-bearing clinoptilolite on growth performance, cecal microflora and intestinal mucosal func-tion of broiler chickens[J].Anim Feed Sci Technol, 2014, 189: 98-106.
[9]YAN R, ZHANG L,YANG X. Bioavailability evaluation of zinc-bearing palygorskite as a zinc source for broiler chickens[J]. Appl Clay Sci, 2016,119:155-160.
[10]ZHOU C H, KEELING J. Fundamental and applied research on clay minerals: from climate and environment to nanotechnology[J]. Appl Clay Sci, 2013,74: 3-9.
[11]GIUSTETTO R,WAHYUDI O. Sorption of red dyes on palygorskite: synthesis and stability of red/purple Mayan nanocomposites[J]. Microporous Mesoporous Mater, 2011,142:221-235.
[12]APINES M J,SATOH S,KIRON V,et al. Bioavailability of amino acids chelated and glass embedded zinc to rainbow trout, oncorhynchus mykiss, fingerlings[J]. Aquac Nutr,2001,7:221-228.
[13]CARLSON M S,BOREN C A,WU C, et al. Evaluation of various inclusion rates of organic zinc either as polysaccharide or proteinate complex on the growth performance, plasma, and excretion of nursery pigs[J]. J Anim Sci, 2004,82: 1359-1366.
[14]JIAO L,KE Y, XIAO K, et al. Effects of zinc-exchanged mon-tmorillonite with different zinc loading capacities on growth performance, intestinal microbiota, morphology and permeability in weaned piglets[J].Appl Clay Sci, 2015, 112:40-43.
[15]YANG W,CHEN Y,CHENG Y, et al. Effects of zinc bearing palygorskite supplementation on the growth performance, hepatic mineral content, and antioxidant status of broilers at early age[J]. Asian Australas J Anim Sci,2017,30:1006-1012.
[16]HU C,QIAN Z,SONG J,et al. Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken[J].Poult Sci, 2013,92:143-150.
[17]颜瑞. 固相载锌凹凸棒石茹土对肉鸡锌生物利用率及免疫调节机制的研究[D]. 南京:南京农业大学,2016.
[18]ZHANG R,ZHOU Y,JIANG X, et al. Evaluation of zinc-bearing palygorskite effects on growth performance, nutrient retention, meat quality, and zinc accumulation in blunt snout bream Megalobrama amblycephala[J].Clay Clay Min, 2018, 66:274-285.
[19]丁维俊,周邦靖,翟慕东,等. 参苓白术散对小鼠脾虚模型肠道菌群的影响[J].北京中医药大学学报,2006, 29(8): 530-533.
[20]JIAO L,KE Y,XIAO K,et al. Effects of zinc-exchanged mon-tmorillonite with different zinc loading capacities on growth performance, intestinal microbiota, morphology and permeability in weaned piglets[J]. Appl Clay Sci, 2015,112:40-43.
[21]JIAO L,LIN F,CAO S,et al. Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc-loaded mon-tmorillonite[J]. J Anim Sci Biotechnol, 2017, 8: 27.
[22]XIA M S, HU C H, XU Y. Adsorption of Aeromonas hydrophila by copper-bearing montmorillonite clays[J]. J Inorg Mater, 2007,22: 652-656.
[23]WANG W,TIAN G,ZONG L, et al. Mesoporous hybrid Zn-silicate derived from red palygorskite clay as a high-efficient adsorbent for anti-biotics[J]. Microporous Mesoporous Mater, 2016,234:317-325.
[24]FENG J,MA W Q,NIU H H, et al. Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers[J].Biological Trace Element Research, 2010, 133(2):203-211.
[25]严思益. 免疫学笔记精要[M].北京:化学工业出版社,2009.
[26]ZHANG R Q, JIANG Y, LIU W J, et al. Evaluation of zinc-bearing palygorskite effects on the growth, immunity,antioxidant capability, and resistance to transport stress in blunt snout bream[J]. Aquaculture, 2021,532:963-973.
[27]HALLIWELL B,WHITEMAN M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean[J]. Br J Pharmacol, 2004, 142: 231-255.
[28]谢继青,李玉华,杨春梅,等. 超氧化物歧化酶的药理作用[J].中国生化药物杂志,2009,30(1):72-75.
相似文献/References:
[1]魏思雨,王亚波,邵阳,等.近地层大气臭氧浓度升高对麦季土壤Zn 生物有效性的影响[J].江苏农业学报,2016,(04):791.[doi:10.3969/j.issn.100-4440.2016.04.013]
WEI Si-yu,WANG Ya-bo,SHAO Yang,et al.Influence of elevated tropospheric ozone on the bioavailability of zinc in wheat-planted soil[J].,2016,(06):791.[doi:10.3969/j.issn.100-4440.2016.04.013]
[2]陈博阳,余彬彬,钱晓晴,等.锌和土霉素胁迫对玉米种子发芽和幼苗抗氧化酶活性的影响[J].江苏农业学报,2017,(01):13.[doi:10.3969/j.issn.1000-4440.2017.01.003]
CHEN Bo-yang,YU Bin-bin,QIAN Xiao-qing,et al.Zinc and oxytetracycline stress effects on maize germination and seedling antioxidant system[J].,2017,(06):13.[doi:10.3969/j.issn.1000-4440.2017.01.003]
[3]张海涛,郭西亚,张杰,等.铜绿微囊藻对锌、镉胁迫的生理响应[J].江苏农业学报,2019,(01):33.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
ZHANG Hai-tao,GUO Xi-ya,ZHANG Jie,et al.Physiological response of Microcystis aeruginosa to Zn2+ and Cd2+ stresses[J].,2019,(06):33.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
[4]白珊,倪幸,杨瑗羽,等.不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J].江苏农业学报,2021,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
BAI Shan,NI Xing,YANG Yuan-yu,et al.Immobilization of soil cadmium and zinc by different raw material derived biochars[J].,2021,(06):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
[5]阮思越,何晓明,张玲,等.优化氮素调控对小麦锌积累与转运的影响[J].江苏农业学报,2021,(06):1436.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
RUAN Si-yue,HE Xiao-ming,ZHANG Ling,et al.Effects of optimized nitrogen regulation on zinc accumulation and transport in wheat[J].,2021,(06):1436.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]