参考文献/References:
[1]GUO W, RAGE U K, NINOMIYA S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model[J]. Computers and Electronics in Agriculture, 2013, 96: 58-66.
[2]XIONG X, DUAN L F, LIU L B, et al. Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization[J]. Plant Methods, 2017, 13(1): 104.
[3]苏伟,蒋坤萍,郭浩,等. 地基激光雷达提取大田玉米植株表型信息[J].农业工程学报,2019,35(10): 125-130.
[4]CHENG H, DAMEROW L, BLANKE M, et al. ANN model for apple yield estimation based on feature of tree image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 14-19.
[5]赵德安,刘晓洋,陈玉,等. 苹果采摘机器人夜间识别方法[J].农业机械学报,2015,46(3): 15-22.
[6]ZHANG S W, WANG H X, HUANG W Z, et al. Plant diseased leaf segmentation and recognition by fusion of superpixel, K-means and PHOG[J]. Optik, 2017, 157: 866-872.
[7]ZEMMOUR E, KURTSER P, EDAN Y. Automatic parameter tuning for adaptive thresholding in fruit detection[J]. Sensors, 2019, 19(9), 2130-2151.
[8]卢宏涛,张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理,2016,31(1): 1-17.
[9]王丹丹,何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J].农业工程学报,2019,35(3): 156-163.
[10]薛月菊,黄宁,涂淑琴,等. 未成熟芒果的改进YOLOv2识别方法[J].农业工程学报,2018,34(7): 173-179.
[11]魏云超,赵 耀. 基于DCNN的图像语义分割综述[J].北京交通大学学报(自然科学版),2016,40(4): 82-91.
[12]LONG J, SHELHAMER, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE. IEEE conference on computer vision and pattern recognition. Seoul, Korea: IEEE, 2015: 3431-3440.
[13]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39: 2481-2495.
[14]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[15]LIN G C, TANG Y C, ZOU X J, et al. Guava detection and pose estimation using a low-cost RGB-D sensor in the field[J]. Sensors, 2019, 19(2): 428-443.
[16]MAJEED Y, ZHANG J, ZHANG X, et al. Apple tree trunk and branch segmentation for automatic trellis training using convolutional neural network based semantic segmentation[J]. International Federation of Automatic Control, 2018, 51(17): 75-80.
[17]AMBROZIO D P, AMY T, HENRY M. Multi-species fruit flower detection using a refined semantic segmentation network[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3003-3010.
[18]KANG H W, CHEN C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards[J]. Computers and Electronics Agriculture, 2020, 171: 1016-1033.
[19]NOH H, HONG, HAN B. Learning deconvolution network for semantic segmentation[C]//IEEE. IEEE international conference on computer vision. Los Alamitos, USA: IEEE Computer Society Press, 2015: 1520-1528.
[20]HUANG G, LIU Z, WEINBERGER K Q, et al. Densely connected convolutional networks[C]//IEEE. IEEE conference on computer vision and pattern recognition. Honolulu, USA: IEEE, 2016: 4700-4708.
[21]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. International Conference on Learning Representations, 2014(4):357-361.
[22]徐子豪,黄伟泉,王胤. 基于深度学习的监控视频中多类别车辆检测[J].计算机应用,2019,39(3):700-705.
[23]YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//IEEE. IEEE computer society conference on computer vision and pattern recognition. Piscataway, NJ: IEEE Press, 2018: 3684-3692.
[24]李云伍,徐俊杰,刘得雄,等. 基于改进空洞卷积神经网络的丘陵山区田间道路场景识别[J].农业工程学报,2019,35(7): 150-159.