[1]满晓兰,李龙,张宏,等.基于结构异质性的核桃热风干燥特性及数学模型[J].江苏农业学报,2021,(03):731-738.[doi:doi:10.3969/j.issn.1000-4440.2021.03.024]
 MAN Xiao-lan,LI Long,ZHANG Hong,et al.Hot-air drying characteristics and mathematical model of walnut based on structural heterogeneity[J].,2021,(03):731-738.[doi:doi:10.3969/j.issn.1000-4440.2021.03.024]
点击复制

基于结构异质性的核桃热风干燥特性及数学模型()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
731-738
栏目:
加工贮藏·质量安全
出版日期:
2021-06-30

文章信息/Info

Title:
Hot-air drying characteristics and mathematical model of walnut based on structural heterogeneity
作者:
满晓兰12李龙12张宏12张永成12兰海鹏12
(1.塔里木大学机械电气化工程学院,新疆阿拉尔843300;2.新疆维吾尔自治区普通高等学校现代农业工程重点实验室,新疆阿拉尔843300)
Author(s):
MAN Xiao-lan12LI Long12ZHANG Hong12ZHANG Yong-cheng12LAN Hai-peng12
(1.College of Mechanical and Electrical Engineering, Tarim University, Alar 843300,China;2.Key Laboratory of Modern Agricultural Engineering in Colleges and Universities of Xinjiang Uygur Autonomous Region, Alar 843300, China)
关键词:
核桃热风干燥有效水分扩散系数数学模型
Keywords:
walnuthot-air dryingeffective water diffusion coefficientmathematical model
分类号:
TS255.6
DOI:
doi:10.3969/j.issn.1000-4440.2021.03.024
文献标志码:
A
摘要:
为了揭示热风干燥过程中核桃异质结构的水分传递特性,本研究在43 ℃热风干燥条件下,对核桃单层干燥过程中果壳、果仁及核桃的干燥特性与有效水分扩散系数进行研究。试验结果表明,果壳、果仁及核桃的干燥特性规律大致相似,干燥过程主要发生在降速干燥阶段,且没有明显恒速干燥阶段,核桃在干燥过程表现出显著的非稳态性与异质性,果壳、果仁及核桃的有效水分扩散系数与干基含水率符合三阶-多项式关系,并同时测得核桃的平均有效水分扩散系数为果壳的1.01倍和果仁的1.41倍;模型4 适合用于预测果壳、果仁及核桃43 ℃热风干燥过程中水分比的变化规律。研究结果为明晰核桃干燥过程中的水分传递机制提供了理论依据。
Abstract:
To reveal the properties of water transfer in the heterogeneous structure of walnut during hot-air drying, the drying characteristics and effective water diffusion coefficient of the walnut shell, walnut kernel and whole walnut during single-layer drying process under hot-air drying condition of 43 ℃ were studied. The results showed that, the drying characteristics of the walnut shell, walnut kernel and whole walnut were approximately similar. The drying process mainly occurred in the speed-down drying stage, and there was no obvious drying stage with constant-speed. The walnuts showed significant instability and heterogeneity during the drying process. The effective water diffusion coefficient of the walnut shell, walnut kernel and whole walnut were in third-order polynomial relationship with water content of dry base. It was measured that the average effective water diffusion coefficient of the whole walnut was 1.01 times as large as the walnut shell and 1.41 times as large as the walnut kernel. Model four was suitable for predicting the change rule of moisture ratio of walnut shell, walnut kernel and whole walnut during drying process using 43 ℃ hot-air. The results provide theoretical basis for water transfer mechanism in the drying process of walnuts.

参考文献/References:

[1]CAGLARIRMAK N. Biochemical and physical properties of some walnut genotypes (Juglans regia L.)[J]. Molecular Nutrition & Food Research, 2003, 47(1): 28.
[2]马艳萍,刘兴华,袁德保,等. 不同品种鲜食核桃冷藏期间呼吸强度及品质变化[J]. 农业工程学报,2010,26(1):384-388.
[3]郭忠明. 谈核桃的采收与贮藏[J]. 北京农业, 2013(24):189.
[4]高军龙,赵文革,陈岳祥. 新鲜山核桃坚果原料产地即时热风干燥工艺及优化[J]. 农村经济与科技, 2018, 29(12): 128-131.
[5]ZHOU X, GAO H Y, MITCHAM E J, et al. Comparative analyses of three dehydration methods on drying characteristics and oil quality of in-shell walnuts [J]. Drying Technology,2017, 36(4): 477-490.
[6]朱德泉,马锦,蒋锐,等. 山核桃坚果分段变功率微波干燥工艺参数优化[J]. 农业工程学报, 2016, 32(15): 268-274.
[7]马锦,芈韶雷,朱德泉,等. 山核桃微波干燥动力学模型研究[J]. 食品工业科技, 2015, 36(5): 108-112.
[8]ATUNGULU G G, TEH H E, WANG T, et al. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality[J]. Applied Engineering in Agriculture, 2013,29: 961-971.
[9]刘东琴,王维,卢军党,等. 核桃热泵穿流干燥特性[J]. 食品工业科技, 2019,40(21): 216-218,306.
[10]陈智平,陈盈希,吴潇潇,等. 热泵干燥设备在干燥核桃的试验中的应用[J]. 农村实用技术, 2018(6): 18-20.
[11]QU Q L, YANG X Y, FU M R, et al. Effects of three conventional drying methods on the lipid oxidation, fatty acids composition, and antioxidant activities of walnut (Juglans regia L.)[J]. Drying Technology, 2016, 34(7) : 822-829.
[12] FU M R, QU Q L, YANG X Y, et al. Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut[J]. LWT Food Science & Technology, 2016, 65: 1126-1132.
[13]张波. 核桃射频热风联合干燥特性及品质变化研究[D]. 杨陵:西北农林科技大学, 2017.
[14]杨忠强,闫圣坤,崔宽波,等. 中美青核桃加工成套装备及技术分析[J].食品与机械, 2019, 35(11): 228-232.
[15]孙洁琼. 漾濞县热风炉核桃烘烤技术的推广研究[D]. 昆明:云南师范大学, 2019.
[16]CHEN C, ZHANG W P, VENKITASAMY C, et al. Walnut structure and its influence on the hydration and drying characteristics[J]. Drying Technology, 2020, 38(8):975-986.
[17]朱德泉,曹成茂,丁正耀,等. 山核桃坚果热风干燥特性及其工艺参数优化[J]. 农业工程学报, 2011, 27(7): 364-369.
[18]HASSAN-BEYGI S R, AGHBASHLO M, KIANMEHR M H, et al. Drying characteristics of walnut (Juglans regia L.) during convection drying[J]. International Agrophysics, 2009, 23(2): 129-135.
[19]YANG W, JIANG M, GUO H, et al. Mass transfer simulation of sigillate walnut(Juglans sigillata Dode) during convection drying[J]. Journal of Kunming University of Ence & Technology, 2015,40(3): 84-91.
[20]MAMANI I. Modeling of thermal properties of persian walnut kernel as a function of moisture content and temperature using response surface methodology[J]. Journal of Food Processing & Preservation,2015,39(6): 2762-2772.
[21]卢映洁,任广跃,段续,等. 热风干燥过程中带壳鲜花生水分迁移特性及品质变化[J]. 食品科学, 2020,41(7): 86-92.
[22]KHIR R, PAN Z L, ATUNGULU G G. Size and moisture distribution characteristics of walnuts and their components[J]. Food & Bioprocess Technology, 2013, 6(3): 771-782.
[23]CHEN C, VENKITASAMY C, ZHANG W P, et al. Effective moisture diffusivity and drying simulation of walnuts under hot air[J]. International Journal of Heat and Mass Transfer, 2020, 150:1-10.
[24]CRANK J. The mathematics of diffusion[M].Oxford: Oxford University Press, 1975.
[25]MOHSENIN N N. Physical characteristics: physical properties of plant and animal materials[M]. New York,USA: Gordon and Breach Sci Press,1986.
[26]SRIKIATDEN J, ROBERTS J S. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying[J]. Journal of Food Engineering,2006, 74(1): 143-152.
[27]于镇伟,陈坤杰,高崎,等. 有机污泥干燥特性与干燥模型研究[J]. 农业机械学报, 2017, 48(10): 286-291.
[28]于海明,李海源,张欣悦,等. 水稻秸秆营养穴盘微波热风耦合干燥动力学模型研究[J]. 农业机械学报, 2020, 51(5): 339-348.
[29]王凤贺,丁冶春,陈鹏枭,等. 油茶籽热风干燥动力学研究[J]. 农业机械学报, 2018, 49(S1): 433-439.
[30] LIU X, QIU Z, WANG L, et al. Mathematical modeling for thin layer vacuum belt drying of Panax notoginseng extract[J].Energy Conversion and Management, 2009, 50(4):928-932.
[31]LI C, LIAO J J, YIN Y, et al. Kinetic analysis on the microwave drying of different forms of water in lignite[J]. Fuel Processing Technology, 2018, 176: 174-181.
[32]王汉羊,刘丹,于海明. 山药微波热风耦合干燥特性及动力学模型[J]. 食品科学, 2018, 39(15): 115-121.
[33]MIRZABEIGI K O, SADEGHI M, MIREEI S A, et al. Quality assessment and modeling of microwave-convective drying of lemon slices[J]. Engineering in Agriculture, Environment and Food, 2016, 9(3): 216-223.
[34]JAFARI H, KALANTARI D, AZADBAKHT M. Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and it’s qualitative study[J]. Energy, 2017, 138: 1016-1029.
[35]YALD’YZ O, ERTEK’YN C. Thin layer solar drying of some vegetables[J]. Drying Technology, 2007, 19(3/4): 583-597.
[36]徐建国,张森旺,徐刚,等. 莲子薄层热风干燥特性与水分变化规律[J]. 农业工程学报, 2016,32(13): 303-309.
[37]WEIBULL W . A statistical distribution of wide applicability[J]. J Appl Mech, 1951, 18(2): 293-297.
[38]刁卓超. 澳洲坚果干燥特性及力学特性研究[D]. 昆明:昆明理工大学, 2011.
[39]楚文靖,盛丹梅,张楠,等. 红心火龙果热风干燥动力学模型及品质变化[J]. 食品科学, 2019, 40(17): 150-155.
[40]MUJUMDAR A S. Handbook of industrial drying[M]. fourth ed. Boca Raton: CRC Press, 2014.
[41]WANG S, IKEDIALA J N, TANG J, et al. Radio frequency treatments to control codling moth in in-shell walnuts[J]. Postharvest Biology & Technology, 2001, 22(1): 29-38.
[42]WANG S, TANG J, JOHNSON J A, et al. Process protocols based on radio frequency energy to control field and storage pests in in-shell walnuts[J]. Postharvest Biology & Technology, 2002, 26(3): 265-273.
[43]张宏,马岩,郭文松,等. 基于细胞水平上的温185核桃壳脆裂机理分析[J]. 华中农业大学学报, 2014, 33(3): 128-132.
[44]PANKAEW P, JANJAI S, NILNONT W, et al. Moisture desorption isotherm, diffusivity and finite element simulation of drying of macadamia nut (Macadamia integrifolia)[J]. Food & Bioproducts Processing, 2016, 100: 16-24.
[45]AREGBESOLA O A, OGUNSINA B S, SOFOLAHAN A E, et al. Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels[J]. Nigerian Food Journal, 2015, 33(1): 83-89.

相似文献/References:

[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):95.
 XI Wei min,LEI Shui ping.三才期刊采编系统文章正在整理中…[J].,2005,(03):95.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):98.
 ZHENG Hong,PENG Gang.三才期刊采编系统文章正在整理中…[J].,2005,(03):98.
[3]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):95.
 XI Wei min,LEI Shui ping.三才期刊采编系统文章正在整理中…[J].,2006,(03):95.
[4]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):98.
 ZHENG Hong,PENG Gang.三才期刊采编系统文章正在整理中…[J].,2006,(03):98.
[5]陈泽斌,李冰,王定康,等.Illumina MiSeq高通量测序分析核桃内生细菌多样性[J].江苏农业学报,2015,(05):1129.[doi:doi:10.3969/j.issn.1000-4440.2015.05.029]
 CHEN Ze-bin,LI Bing,WANG Ding-kang,et al.Diversity of endophytic bacteria in walnut analyzed by Illumina MiSeq high-throughput sequencing technology[J].,2015,(03):1129.[doi:doi:10.3969/j.issn.1000-4440.2015.05.029]
[6]张敏,王明伟,刘欣宇,等.太行山丘陵区不同林龄核桃树固碳释氧量及冠下土壤碳储量[J].江苏农业学报,2021,(01):93.[doi:doi:10.3969/j.issn.1000-4440.2021.01.012]
 ZHANG Min,WANG Ming-wei,LIU Xin-yu,et al.Carbon fixation and oxygen release amount and soil carbon storage under the canopy of walnut trees with different forest ages in hilly areas of Taihang Mountain[J].,2021,(03):93.[doi:doi:10.3969/j.issn.1000-4440.2021.01.012]

备注/Memo

备注/Memo:
收稿日期:2020-09-15基金项目:新疆生产建设兵团中青年科技创新领军人才计划项目(2018CB014);塔里木大学校长基金项目(TDZKQN201813);塔里木大学研究生科研创新项目(TDGRI201925)作者简介:满晓兰(1996-),女,山东临沂人,硕士研究生,从事农产品干燥理论与技术研究。(E-mail)1024775685@qq.com通讯作者:兰海鹏,(E-mail)lanhaipeng@126.com
更新日期/Last Update: 2021-07-05