参考文献/References:
[1]康绍忠.农业水土工程概论[M].北京:中国农业出版社,2007:115-118.
[2]SHIRI J, NAZEMI A H, SADRADDINI A A,et al. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran[J]. Computers and Electronics in Agriculture, 2014,108: 230-241.
[3]KISI O, SANIKHANI H, ZOUNEMAT-KERMANI M, et al. Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data[J]. Computers and Electronics in Agriculture, 2015,115: 66-77.
[4]MARTI P, GONZLEZ-ALTOZANO P, LPEZ-URREA R, et al. Modeling reference evapotranspiration with calculated targets. Assessment and implications[J]. Agricultural Water Management, 2015,149: 81-90.
[5]FERREIRA L B, DA CUNHA F F, DE OLIVEIRA R A, et al. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM-A new approach[J]. Journal of Hydrology, 2019, 572: 556-570.
[6]BANDA P, CEMEK B, KUCUKTOPCU E, et al. Estimation of daily reference evapotranspiration by neuro computing techniques using limited data in a semi-arid environment[J]. Archives of Agronomy and Soil Science, 2018, 64(7): 916-929.
[7]冀秀梅,王龙,高克伟,等. 极限学习机在中厚板轧制力预报中的应用[J].钢铁研究学报,2020,32(5):393-399.
[8]卢宏亮,赵明松. 基于神经网络模型的安徽省土壤pH预测[J].江苏农业学报,2019,35(5):1119-1123.
[9]李晨,崔宁博,魏新平,等. 改进Hargreaves模型估算川中丘陵区参考作物蒸散量[J].农业工程学报,2015,31(11): 129-135.
[10]LI H J, XU Q, HE Y S, et al. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models[J]. Landslides, 2018, 15(10): 2047-2059.
[11]张千,魏正英,张育斌,等. 基于烟花算法优化极限学习机的温室参考作物蒸散量预测研究[J].中国农村水利水电,2020(3):29-32,38.
[12]许伟栋,赵忠盖. 基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,34(6):1378-1385.
[13]魏俊,崔宁博,陈雨霖,等. 基于极限学习机模型的中国西北地区参考作物蒸散量预报[J].中国农村水利水电,2018(8):35-39.
[14]刘小华,魏炳乾,吴立峰,等. 4种人工智能模型在江西省参考作物蒸散量计算中的适用性[J].排灌机械工程学报,2020,38(1):102-108.
[15]樊湘鹏,许燕,周建平,等. 遗传算法与小波神经网络在ET0预测中的应用[J].燕山大学学报,2019,43(2):182-188.
[16]RAWAT K S, SINGH S K, BALA A, et al. Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment[J]. Agricultural Water Management, 2019,213: 922-933.
[17]邢立文,崔宁博,董娟. 基于LSTM深度学习模型的华北地区参考作物蒸散量预测研究[J].水利水电技术,2019,50(4):64-72.
[18]李可利,张鑫. 基于ANFIS的陕西省参考作物蒸散量计算[J].自然资源报,2020,35(6):1472-1483.
[19]GRANATA F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study[J]. Agricultural Water Management, 2019,217: 303-315.
[20]ANTONOPOULOS V Z, ANTONOPOULOS A V. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables[J]. Computers and Electronics in Agriculture, 2017,132: 86-96.
[21]李志磊,周建平,魏正英,等. ET0预测的卡尔曼滤波修正ANFIS模型研究[J].干旱地区农业研究,2017,35(3):114-119.
[22]冯禹,崔宁博,龚道枝,等. 基于极限学习机的参考作物蒸散量预测模型[J].农业工程学报,2015,31(增刊1):153-160.
[23]张皓杰,崔宁博,徐 颖,等. 基于ELM的西北旱区参考作物蒸散量预报模型[J].排灌机械工程学报,2018,36(8):779-784.
[24]吴立峰,鲁向晖,刘小强,等. 蝙蝠算法优化极限学习机模拟参考作物蒸散量[J].排灌机械工程学报,2018,36(9):802-805,829.
[25]ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guide-lines for computing crop water requirements[M]//FAO. Irrigation and Drainage. Rome:FAO, 1998.
[26]HUANG G, ZHU Q, SIEW C K, et al. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[27]王俊,刘刚. 基于粒子群优化聚类的温室无线传感器网络节能方法[J].农业工程学报,2012,28(7):172-177.
[28]刘环宇,陈海涛,闵诗尧,等. 基于PSO-SVR的植物纤维地膜抗张强度预测研究[J].农业机械学报,2017,48(4):118-124.
[29]郭亚菲,樊超,闫洪涛. 基于主成分分析和粒子群优化神经网络的粮食产量预测[J].江苏农业科学,2019,47(19):241-245.