参考文献/References:
[1]HOLZBACH J C, NASCIMENTO I R, LOPES L M X. Phenylethylpyranone and aristolochic acid derivatives from Aristolochia urupaensis[J]. Journal of the Brazilian Chemical Society, 2017, 28(11): 2275-2279.
[2]JIN K, SU K K, LI T, et al. Hepatic premalignant alterations triggered by human nephrotoxin aristolochic acid Ⅰ in canines[J]. Cancer Prevention Research, 2016, 9(4): 324-334.
[3]薛寿征,曾广先. 马兜铃酸肾病:研究及启示[J]. 科学(上海), 2018, 70(4): 27-31.
[4]柏兆方,王春宇,王伽伯,等. 马兜铃酸与肝癌相关性的研究及思考[J]. 世界科学技术:中医药现代化, 2019,21(7): 1275-1279.
[5]宋亚刚,苗艳艳,苗明三. 含马兜铃酸中药毒性分析[J]. 中华中医药杂志, 2018, 33(5): 1950-1954.
[6]章莹,肖榕,黄杰,等. 不同产地马兜铃蜜炙前后HPLC指纹图谱分析[J]. 中国药学杂志, 2017, 52(16): 1397-1402.
[7]刘欣欣,王莉,肖红斌. 不同产地马兜铃药材中马兜铃总酸的含量[J]. 时珍国医国药, 2017,28(1):74-76.
[8]LIN W Q, CHAI Q Q, WANG W, et al. A novel method for geographical origin identification of Tetrastigma hemsleyanum (Sanyeqing) by near-infrared spectroscopy[J]. Analytical Methods, 2018, 10(25): 2980-2988.
[9]MORAIS C L M, LIMA K M G. Principal component analysis with linear and quadratic discriminant analysis for identification of cancer samples based on mass spectrometry[J]. Journal of the Brazilian Chemical Society, 2018, 29: 472-481.
[10]LI C N, SHAO Y H, YIN W T, et al. Robust and sparse linear discriminant analysis via an alternating direction method of multipliers[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(3): 915-926.
[11]CHEN Y W, HU X L, FAN W T, et al. Fast density peak clustering for large scale data based on kNN[J]. Knowledge-Based Systems, 2020, 2020(187): 104824.
[12]马娜,李艳文,徐苗. 基于改进SVM 算法的植物叶片分类研究[J]. 山西农业大学学报(自然科学版), 2018, 38(11): 33-38.
[13]张晓忆,李卫国,景元书,等. 多种光谱指标构建决策树的水稻种植面积提取[J]. 江苏农业学报, 2016, 32(5): 1066-1072.
[14]唐云峰,柴琴琴,林双杰,等. 可见/近红外光谱的葡萄籽油掺伪检测系统[J]. 光谱学与光谱分析, 2020, 40(1): 202-208.
[15]陈曦,张坤. 一种基于树增强朴素贝叶斯的分类器学习方法[J]. 电子与信息学报, 2019, 41(8): 2001-2008.
[16]袁培森,杨承林,宋玉红,等. 基于Stacking集成学习的水稻表型组学实体分类研究[J]. 农业机械学报, 2019, 50(11):144-152.
[17]ANDIOJAYA A, DEMIRHAN H. A bagging algorithm for the imputation of missing values in time series[J]. Expert Systems with Application, 2019, 129(9): 10-26.
[18]WANG B Y, PINEAU J. Online bagging and boosting for imbalanced data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3353-3366.
[19]ELAYIDOM S, IDIKKULA S M, ALEXANDER J. A hybrid stacking ensemble framwork for employment predicyion problems[J]. Advances in Computational Research, 2011, 3(1): 25-30.
[20]DINAKAR K, WEINSTEIN E, LIEBERMAN H, et al. Stacked generalization learning to analyze teenage distress[C]//Association for the Advancement of Artificial Intelligence. Eighth International AAAI Conference on Weblogs and Social Media. Ann Arbor, Michigan, USA:Association for the Advancement of Artificial Intelligence,2014.
[21]HADDAD B M, YANG S, KARAM L J, et al. Multifeature, sparse-based approach for defects detection and classifification in semiconductor units[J]. IEEE Transactions on Automation Science and Engineering, 2016, 15(1): 145-159.
[22]孙博,王建东,陈海燕,等. 集成学习中的多样性度量[J]. 控制与决策, 2014, 29(3): 385-394.
[23]章宁,陈钦. 基于AUC及Q统计值的集成学习训练方法[J]. 计算机应用, 2019, 39(4):935-939.
[24]GUI L, XIA Y, LI H, et al. Prediction of NOX emission from coal-fired boiler based on RF-GBDT[C]//KIM YH. 2017 6th International Conference on Energy and Environmental Protection. Zhuhai, China:KIM YH, 2017.
相似文献/References:
[1]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(02):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[2]仇逊超.红松仁脂肪的近红外光谱定量检测[J].江苏农业学报,2018,(03):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
QIU Xun-chao.Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy[J].,2018,(02):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
[3]彭雅玲,邱雪,张海红,等.近红外光谱技术检测灵武长枣果肉硬度和贮藏时间[J].江苏农业学报,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
PENG Ya-ling,QIU Xue,ZHANG Hai-hong,et al.Near-infrared spectroscopy for the determination of hardness and storage time of jujube fruit[J].,2019,(02):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
[4]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(02):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[5]曲歌,陈争光,张庆华.基于无信息变量消除法的水稻种子发芽率测定[J].江苏农业学报,2019,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
QU Ge,CHEN Zheng-guang,ZHANG Qing-hua.Study on germination rate of rice seed based on uninformation variable elimination method[J].,2019,(02):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
[6]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[7]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(02):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
[8]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
[9]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(02):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]