[1]王亚丽,陈煜东,王益军.高世代回交玉米矮秆种质的转录组分析[J].江苏农业学报,2021,(02):280-288.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
 WANG Ya-li,CHEN Yu-dong,WANG Yi-jun.Transcriptome analysis on the advanced backcross population of maize dwarf germplasm[J].,2021,(02):280-288.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
点击复制

高世代回交玉米矮秆种质的转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
280-288
栏目:
遗传育种·生理生化
出版日期:
2021-04-30

文章信息/Info

Title:
Transcriptome analysis on the advanced backcross population of maize dwarf germplasm
作者:
王亚丽12陈煜东12王益军12
(1.江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室/江苏省作物基因组学和分子育种重点实验室/扬州大学农学院,江苏扬州225009;2.江苏省粮食作物现代产业技术协同创新中心/扬州大学,江苏扬州225009)
Author(s):
WANG Ya-li12CHEN Yu-dong12WANG Yi-jun12
(1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/College of Agriculture, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Yangzhou University, Yangzhou 225009, China)
关键词:
矮秆高世代回交群体转录组测序共表达玉米
Keywords:
dwarf plantadvanced backcross populationtranscriptome sequencingco-expressionmaize
分类号:
S513.035.3
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.002
文献标志码:
A
摘要:
株高影响株型建成,与抗倒性、收获指数以及最终产量相关。对矮秆材料的研究有助于丰富对株高调控机理的认识。在前期研究中,对玉米矮秆材料D11的农艺与生理特征进行了分析。本研究基于高世代回交群体,通过转录组测序,对矮秆材料D11的基因表达调控进行解析。与株高正常植株相比,矮秆材料中共检测到2 537个差异表达的基因,其中1 120个基因表达上调、1 417个基因表达下调。功能注释、GO富集、通路富集的结果表明,差异表达基因参与细胞延伸、细胞骨架功能、微管组织、叶绿体功能、植物激素合成代谢等。差异表达基因最显著富集的通路与糖酵解相关。共表达分析结果表明,编码果糖-1,6-双磷酸酶的基因与多个差异表达基因存在功能关联。该研究结果揭示了玉米矮秆材料中的基因表达调控,为后续玉米株高调控节点的发掘提供了参考。
Abstract:
Plant height affects plant type and is related to lodging resistance, harvest index and final yield. The research on dwarf plants helps to improve the understanding of plant height regulation mechanism. In previous studies, the agronomic and physiological characteristics of maize dwarf material D11 were analyzed. In this study, based on the advanced backcross population, the gene expression regulation of D11 was analyzed by transcriptome sequencing. A total of 2 537 differentially expressed genes (DEGs) were identified,including 1 120 up-regulated and 1 417 down-regulated DEGs. Functional annotation, GO enrichment and pathway enrichment analysis results indicated that DEGs were involved in cell expansion, cytoskeletal function, microtubule organization, chloroplast function, phytohormone homeostasis. The pathway most significantly enriched by DEGs was related to glycolysis. The gene encoding fructose-1,6-bisphosphatase was functionally related to several DEGs. The results of this study reveal the gene expression regulation in maize dwarf materials, and provide a reference for the subsequent exploration of maize plant height regulatory modes.

参考文献/References:

[1]KHUSH G S. Green revolution: the way forward[J]. Nature Reviews Genetics,2001,2(10): 815-822.
[2]MONNA L,KITAZAWA N,YOSHINO R, et al. Positional cloning of rice semidwarfing gene,sd-1: rice ‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Research,2002,9(1): 11-17.
[3]SPIELMEYER W,ELLIS M H,CHANDLER P M. Semidwarf (sd-1), ‘green revolution’ rice,contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(13): 9043-9048.
[4]PENG J,RICHARDS D E,HARTLEY N M,et al. ‘Green revolution’ genes encode mutant gibberellin response modulators[J]. Nature,1999,400(6741): 256-261.
[5]MULTANI D S,BRIGGS S P,CHAMBERLIN M A,et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science,2003,302(5642): 81-84.
[6]MAKAREVITCH I,THOMPSON A,MUEHLBAUER G J,et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. PLoS One,2012,7(1): e30798.
[7]KIR G,YE H,NELISSEN H,et al. RNA interference knockdown of Brassinosteroid Insensitive1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiology,2015,169(1): 826-839.
[8]DE SAINT GERMAIN A,LIGEROT Y,DUN EA,et al. Strigolactones stimulate internode elongation independently of gibberellins[J]. Plant Physiology,2013,163(2): 1012-1025.
[9]WENG J,XIE C,HAO Z,et al. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines[J]. PLoS One,2011,6(12): e29229.
[10]PEIFFER J A,ROMAY M C,GORE M A,et al. The genetic architecture of maize height[J]. Genetics,2014,196(4): 1337-1356.
[11]李清超,李永祥,杨钊钊,等. 基于多重相关RIL群体的玉米株高和穗位高QTL定位[J]. 作物学报,2013,39(9): 1521-1529.
[12]TENG F,ZHAI L,LIU R,et al. ZmGA3ox2,a candidate gene for a major QTL,qPH3.1,for plant height in maize[J]. The Plant Journal,2013,73(3): 405-416.
[13]XING A,GAO Y,YE L,et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize[J]. Journal of Experimental Botany,2015,66(13): 3791-3802.
[14]WANG Y,LU W,CHEN Y,et al. Revealing physiological and genetic properties of a dominant maize dwarf Dwarf11 (D11) by integrative analysis[J]. Molecular Breeding,2016,36(3): 31.
[15]CONESA A,MADRIGAL P,TARAZONA S,et al. A survey of best practices for RNA-seq data analysis[J]. Genome Biology,2016,17: 13.
[16]LI R,YU C,LI Y,et al. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25(15): 1966-1967.
[17]ROBERTS A,PIMENTEL H,TRAPNELL C,et al. Identification of novel transcripts in annotated genomes using RNA-Seq[J]. Bioinformatics,2011,27(17): 2325-2329.
[18]GENE ONTOLOGY CONSORTIUM. Creating the gene ontology resource: design and implementation[J]. Genome Research,2001,11(8): 1425-1433.
[19]KANEHISA M,GOTO S,SATO Y,et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Research,2012,40(Database issue): D109-D114.
[20]LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4): 402-408.
[21]王江英,朱朋波,汤雪燕,等. 外源赤霉素诱导矮生山茶恨天高植株生长的转录组分析[J].江苏农业学报,2020,36(1):47-56.
[22]员盎然,孙小娟,马小雯,等. GA3与ABA对黑穗醋栗二次萌芽总酚含量及代谢酶活性的影响[J].南方农业学报,2019,50(6):1263-1270.
[23]刘达潍,刘诗琴,易鹏程,等.淹水胁迫下外源激素对甜瓜幼苗根系生理特性的影响[J].江苏农业科学,2019,47(9):182-185.
[24]曹帅,杜仲阳,刘鹏,等. 碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,36(2):284-291.
[25]VANSTRAELEN M,BENKOVá E. Hormonal interactions in the regulation of plant development[J]. Annual Review of Cell and Developmental Biology,2012,28: 463-487.
[26]JIANG X,LI H,WANG T,et al. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells[J]. The Plant Journal,2012,72(5): 768-780.

相似文献/References:

[1]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(02):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]

备注/Memo

备注/Memo:
收稿日期:2020-07-06基金项目:国家自然科学基金项目(31571671);扬州大学高端人才支持计划项目(18HTYZU12);扬州大学青蓝工程项目(QLYZU201809);扬州大学科技创新培育基金项目(2019CXJ097);江苏高校优势学科建设工程项目(PAPD)作者简介:王亚丽(1995-),女,河南济源人,硕士研究生,研究方向为玉米遗传育种。(E-mail)wylyzu@163.com通讯作者:王益军,(E-mail)wyj@yzu.edu.cn
更新日期/Last Update: 2021-05-10