参考文献/References:
[1]王勇,陈硕,卢端萍, 等.金线莲化学成分的研究[J]. 中草药, 2017(13):36-41.
[2]何春年,王春兰,郭顺星,等. 福建金线莲的化学成分研究Ⅱ[J]. 中国中药杂志, 2005, 39(10): 581-582.
[3]马玉芳,郑小香,衣伟萌,等. 金线莲多糖对免疫抑制小鼠脾淋巴细胞体外增殖、 分泌NO及细胞因子的影响[J]. 天然产物研究与开发, 2018,30(1):21-26.
[4]李芹,周文,刘路,等. 金线莲喷雾剂治疗手足口病口腔疱疹临床观察[J]. 福建中医药, 2012, 43(3):9-10.
[5]肖雪洋. 植物叶片图像识别特征的研究和在线识别系统实现[D]. 合肥:中国科学技术大学,2011.
[6]蔡超. 金线莲的鉴别与应用[J]. 中国中医药现代远程教育, 2016, 14(21):123-124, 127.
[7]蔡文燕,肖华山,范秀珍. 金线莲研究进展(综述)[J]. 亚热带植物科学, 2003(3):69-73.
[8]王海阁,许文,张勋,等. 林下栽培金线莲的生药鉴别[J]. 中药材, 2020, 43(2):303-308.
[9]TAO O, LIN Z, ZHANG X B, et al. Research on identification model of chinese herbal medicine by texture feature parameter of transverse section image[J]. World Science and Technology-Modernization of Traditional Chinese Medicine, 2014(12):2558-2562.
[10]沈宝国,陈树人,尹建军,等. 基于颜色特征的棉田绿色杂草图像识别方法[J]. 农业工程学报,2009,25(6):163-167.
[11]HERRERA P J, DORADO J, RIBEIRO . A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method[J]. Sensors, 2014(14):15304-15324.
[12]TURKOGLU M, HANBAY D. Leaf-based plant species recognition based on improved local binary pattern and extreme learning machine[J]. Physica A: Statistical Mechanics and its Applications, 2019, 527: 121297.
[13]PAL M , FOODY G M . Feature selection for classification of hyperspectral data by SVM[J]. IEEE Transactions on Geoence and Remote Sensing, 2010, 48(5): 2297-2307.
[14]ZHANG S C, LI X L, ZONG M,et al. Learning k for kNN classification[J]. ACM Transactions on Intelligent Systems and Technology, 2017, 8(8):1-19.
[15]KIM S Y , UPNEJA A . Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models[J]. Economic Modelling, 2014, 36(1): 354-362.
[16]FAGERLAND M W , HOSMER D W , BOFIN A M . Multinomial goodness-of-fit tests for logistic regression models[J]. Statistics in Medicine, 2008, 27(21): 4238-4253.
[17]HAN J , ZHANG D , CHENG G , et al. Advanced deep-learning techniques for salient and category-specific object detection: a survey[J]. IEEE Signal Processing Magazine, 2018, 35(1):84-100.
[18]DYRMANN M, KARSTOFT H, MIDTIBY H S, et al. Plant species classification using deep convolutional neural network[J]. Biosystems Engineering,2016, 151:72-80 .
[19]邓向武,齐龙,马旭,等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14):173-180.
[20]KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[C]//Ulrike von Luxburg, Isabelle Guyon. Proceedings of the 31st International Conference on Neural Information Processing SystemsDecember. San Diego,CA: Neural Information Processing Systems Foundation, 2017: 3146-3154.
[21]WANG D H, ZHANG Y, ZHAO Y. LightGBM: an effective miRNA classification method in breast cancer patients [C]// Association for Computing Machinery.Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics. New York: Association for Computing Machinery, 2017: 7-11.
[22]ZHANG J, MUCS D, NORINDER U, et al. LightGBM: an effective and scalable algorithm for prediction of chemical toxicity-application to the Tox21 and mutagenicity data sets[J]. Journal of Chemical Information & Modeling, 2019, 59(10):4150-4158.
[23]POST F H, VROLIJK B, HAUSER H, et al. The state of the art in flow visualisation: feature extraction and tracking[J]. Computer Graphics Forum, 2010, 22(4):775-792.
[24]胡维炜,张武,刘连忠,等. 利用图像处理技术计算大豆叶片相对病斑面积[J]. 江苏农业学报,2016,32(4):774-779.
[25]WANG X F, HUANG D S, DU J X, et al. Classification of plant leaf images with complicated background[J]. Applied Mathematics and Computation, 2008, 205(2): 916-926.
[26]HWANG W, WANG H T, KIM H, et al. Face recognition system using multiple face model of hybrid fourier feature under uncontrolled illumination variation[J]. IEEE Transactions on Image Processing, 2011, 20(4):1152-1165.
[27]HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. Studies in Media and Communication, 1973, 3(6): 610-621.
[28]LIU L, FIEGUTH P, GUO Y, et al. Local binary features for texture classification: taxonomy and experimental study[J]. Pattern Recognition, 2017(62): 135-160.
[29]OJALA T, PIETIKINEN M, MENP T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
相似文献/References:
[1]赵建鹏,杨秀峰,李国洪,等.基于面向对象的设施蔬菜高分遥感影像提取[J].江苏农业学报,2019,(04):911.[doi:doi:10.3969/j.issn.1000-4440.2019.04.023]
ZHAO Jian peng,YANG Xiu feng,LI Guo hong,et al.Object oriented extraction of high resolution remote sensing images of
facility vegetables[J].,2019,(01):911.[doi:doi:10.3969/j.issn.1000-4440.2019.04.023]
[2]梅瑜,王继华,蔡时可,等.金线莲应答高温胁迫的蛋白质组学分析[J].江苏农业学报,2020,(06):1389.[doi:doi:10.3969/j.issn.1000-4440.2020.06.006]
MEI Yu,WANG Ji-hua,CAI Shi-ke,et al.Proteomics analysis on Anoectochilus roxburghii in response to high temperature stress[J].,2020,(01):1389.[doi:doi:10.3969/j.issn.1000-4440.2020.06.006]