参考文献/References:
[1]林开颜,徐立鸿,吴军辉.计算机视觉技术在作物生长监测中的研究进展[J].农业工程学报,2004,20(2):279-283.
[2]李朝东,崔国贤,盛畅,等.计算机视觉技术在农业领域的应用[J].农机化研究, 2009(12):234-238.
[3]李晓斌,郭玉明.机器视觉高精度测量技术在农业工程中的应用[J].农机化研究,2012,34(5):7-11.
[4]陈梅香,刘蒙蒙,赵丽,等.基于机器视觉的设施农业害虫监测技术研究进展与展望[J].农业工程技术,2017,37(31):10-15.
[5]郑纪业,阮怀军,封文杰,等.农业物联网体系结构与应用领域研究进展[J].中国农业科学,2017,50(4):657-668.
[6]REVATHI P,HEMALATHA M.Classification of cotton leaf spot diseases using image processing edge detection techniques[C]//IEEE. 2012 International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET).Tiruchirappalli:IEEE,2012:169-173.
[7]SILVA F F, LUZ P H C, ROMUALDO L M, et al. A diagnostic tool for magnesium nutrition in maize based on image analysis of different leaf sections[J].Crop Science,2014,54(2):738-745.
[8]张珏,田海清,李哲,等.基于数码相机图像的甜菜冠层氮素营养监测[J].农业工程学报,2018,34(1):157-163.
[9]吴雪梅,张富贵,吕敬堂.基于图像颜色信息的茶叶嫩叶识别方法研究[J].茶叶科学, 2013(6):98-103.
[10]孙肖肖,牟少敏,许永玉,等.基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2):211-216.
[11]陈锋军,王成翰,顾梦梦,等.基于全卷积神经网络的云杉图像分割算法[J].农业机械学报,2018,49(12):188-194,210.
[12]孙俊,谭文军,武小红,等.多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报,2019,35(12):184-190.
[13]张芳,王璐,付立思,等.复杂背景下黄瓜病害叶片的分割方法研究[J].浙江农业学报, 2014,26(5):1346-1355.
[14]宋熙煜,周利莉,李中国,等.图像分割中的超像素方法研究综述[J].中国图象图形学报, 2018, 20(5):599-608.
[15]ACHANTA R,SHAJI A,SMITH K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern and Machine Intelligence,2012,34(11):2274-2282.
[16]VLADIMIR V.Universal learning technology:Support vector machines[J].NEC Journal of Advanced Technology,2005,2(2):137-144.
[17]陈文颖,林永君,杨春来,等.基于SVM预测模型的光伏发电系统MPPT研究[J].太阳能学报,2013,34(2):245-250.
[18]YASSINE B,TAYLOR P, STORY A. Fully automated lung segmentation from chest radiographs using SLICO superpixels[J].Analog Integrated Circuits & Signal Processing,2018,95(3):423-428.
[19]LIU Y J,YU C C,YU M J,et al.Manifold SLIC:A fast method to compute content-Sensitive superpixels[C]//IEEE Computer Society. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco,CA,USA:IEEE Computer Society,2016:651-659.
[20]BUYSSENS P,GARDIN I,RUAN S,et al.Eikonal-based region growing for efficient clustering[J]. Image and Vision Computing, 2014, 32(12):1045-1054.
相似文献/References:
[1]胡维炜,张武,刘连忠,等.利用图像处理技术计算大豆叶片相对病斑面积[J].江苏农业学报,2016,(04):774.[doi:10.3969/j.issn.100-4440.2016.04.010]
HU Wei-wei,ZHANG Wu,LIU Lian-zhong,et al.Measurement of relative lesion area on soybean leaf using image processing technology[J].,2016,(04):774.[doi:10.3969/j.issn.100-4440.2016.04.010]
[2]车金庆,王帆,王艺洁,等.基于视觉注意机制的黄绿色苹果图像分割[J].江苏农业学报,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
CHE Jin-qing,WANG Fan,WANG Yi-jie,et al.A segmentation method of yellow and green apple images based on visual attention mechanism[J].,2018,(04):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
[3]王振,张善文,王献锋.基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J].江苏农业学报,2019,(05):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
WANG Zhen,ZHANG Shan-wen,WANG Xian-feng.Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J].,2019,(04):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
[4]雷旺雄,卢军.葡萄采摘机器人采摘点的视觉定位[J].江苏农业学报,2020,(04):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
LEI Wang-xiong,LU Jun.Visual positioning method for picking point of grape picking robot[J].,2020,(04):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
[5]魏超宇,韩文,庞程,等.基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割[J].江苏农业学报,2021,(04):990.[doi:doi:10.3969/j.issn.1000-4440.2021.04.023]
WEI Chao-yu,HAN Wen,PANG Cheng,et al.Image segmentation of Huanghua pear plants at fruit-thinning stage based on multi-scale feature fusion and dense connection network[J].,2021,(04):990.[doi:doi:10.3969/j.issn.1000-4440.2021.04.023]
[6]王万亮,江高飞,严江伟,等.基于卷积评价及对抗网络的花粉、孢子图像增广算法[J].江苏农业学报,2021,(05):1190.[doi:doi:10.3969/j.issn.1000-4440.2021.05.014]
WANG Wan-liang,JIANG Gao-fei,YAN Jiang-wei,et al.Augmented algorithm for pollen and spore images based on convolution evaluation and pix2pix network[J].,2021,(04):1190.[doi:doi:10.3969/j.issn.1000-4440.2021.05.014]
[7]陈科尹,吴崇友,关卓怀,等.基于统计直方图k-means聚类的水稻冠层图像分割[J].江苏农业学报,2021,(06):1425.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
CHEN Ke-yin,WU Chong-you,GUAN Zhuo-huai,et al.Rice canopy image segmentation based on statistical histogram k-means clustering[J].,2021,(04):1425.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
[8]马立新,夏利利,刘璎瑛,等.基于图像处理的秧苗均匀度合格率检测[J].江苏农业学报,2022,38(02):387.[doi:doi:10.3969/j.issn.1000-4440.2022.02.012]
MA Li-xin,XIA Li-li,LIU Ying-ying,et al.Seedling uniformity detection based on image processing[J].,2022,38(04):387.[doi:doi:10.3969/j.issn.1000-4440.2022.02.012]
[9]许鑫,耿庆,郑凯,等.基于纹理特征与深度学习的小麦图像中的穗粒分割与计数[J].江苏农业学报,2024,(04):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]
XU Xin,GENG Qing,ZHENG Kai,et al.Segmentation and counting of wheat spikes and grains based on texture features and deep learning[J].,2024,(04):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]