参考文献/References:
[1]杨联松,白一松,张培江,等. 谷粒形状与稻米品质相关性研究[J]. 杂交水稻,2001,16(4):48-50, 54.
[2]徐正进,陈温福,马殿荣,等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报,2004,30(9):894-900.
[3]FAN C C, XING Y Z, MAO H L, et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics,2006,112(6): 1164-1171.
[4]QI P, LIN Y S, SONG X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research,2012,22(12): 1666-1680.
[5]ZHANG X J, WANG J F, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences,2012,109(52): 21534-21539.
[6]SI L Z, CHEN J Y, HUANG X H, et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4): 447-456.
[7]YING J Z, MA M, BAI C, et al. TGW3,a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant,2018,11(5): 750-753.
[8]LIU Q, HAN R X, WU K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications,2018,9(1): 1-12.
[9]ZHAO D S, LI Q F, ZHANG C Q, et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications,2018,9(1): 1240.
[10]SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5): 623-630.
[11]SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008,40(8): 1023-1028.
[12]WENG J F, GU S H, WAN X Y, et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J]. Cell Research,2008,18(12): 1199-1209.
[13]LI Y B, FAN C C, XING Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics,2011,43(12): 1266-1269.
[14]WANG Y X, XIONG G S, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics,2015,47(8): 944-948.
[15]WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(8): 949-954.
[16]WANG S K, WU K, YUAN Q B, et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8): 950-954.
[17]WANG S S, WU K, QIAN Q, et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research,2017,27(9): 1142-1156.
[18]HUANG K, WANG D K, DUAN P G, et al. Wide and thick GRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J]. Plant Journal,2017,91(5): 849-860.
[19]MAO H L, SUN S Y, YAO J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010,107(45): 19579-19584.
[20]SUN S Y, WANG L, MAO H L, et al. A G-protein pathway determines grain size in rice[J]. Nature Communications,2018,9(1): 851.
[21]LIU J F, CHEN J, ZHENG X M, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants,2017, 3: 17043.
[22]XU C J, LIU Y, LI Y B, et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany,2015,66(9): 2611-2623.
[23]丁丹. 水稻5个粒型相关基因的分子标记开发与效应分析[D]. 南京:南京农业大学,2014.
[24]张亚东,张颖慧,董少玲,等. 特大粒水稻材料粒型性状的QTL检测[J]. 中国水稻科学,2013,27(2):122-128.
[25]ZHANG Y D, ZHENG J, LIANG Z K, et al. Verification and evaluation of grain QTLs using RILs from TD70 × Kasalath in rice[J]. Genetics & Molecular Research,2015,14(4): 14882-14892.
[26]ZHANG Y D, ZHAO Q Y, ZHAO C F. Distribution of seven grain genes and evaluation of their genetic effects on grain traits[J]. Pakistan Journal of Botany,2016,48(3): 1073-1079.
[27]WANG L, LI P H, BRUTNELL T P. Exploring plant transcriptomes using ultra high-throughput sequencing[J]. Briefings in Functional Genomics,2010,9(2): 118-128.
[28]GUO H B, MENDRIKAHY J N, XIE L, et al. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis[J]. Scientific Reports,2017, 7: 40139.
[29]SHANKAR R, BHATTACHARJEE A, JAIN M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses[J]. Scientific Reports, 2016, 6: 23719.
[30]GONZLEZ-SCHAIN N, DRENI L, LAWAS L M F, et al. Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress tesponses in tolerant and sensitive rice varieties[J]. Plant & Cell Physiology,2016,57(1): 57-68.
[31]WANG J, ZHANG Q, WANG Y, et al. Analysing the rice young panicle transcriptome reveals the gene regulatory network controlled by TRIANGULAR HULL1[J]. Rice,2019,12(1): 6.
[32]ZHANG W H, SUN P Y, HE Q, et al. Transcriptome analysis of near-isogenic line provides novel insights into genes associated with panicle traits regulation in rice[J]. PLoS One, 2018, 13(6): e0199077.
[33]KE S, LIU X J, LUAN X, et al. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.)[J]. Gene,2018,675: 285-300.
[34]TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols,2012, 7(3): 562-578.
[35]KAWAHARA, Y BASTIDE M D L, HAMILTON J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice,2013,6(1): 1-10.
[36]LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map (SAM) format and SAMtools[J]. Bioinformatics,2009,25(1/2): 1653-1654.
[37]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,2001,25(4): 402-408.
[38]YU J, XIONG H, ZHU X, et al. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology,2017,15(1): 28.
[39]LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019,70(1): 1-30.
[40]DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15(10): 573-581.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(04):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(04):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(04):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(04):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(04):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]王建,张善磊,赵春芳,等.水稻粒型基因GW2和GS3遗传效应分析[J].江苏农业学报,2017,(04):721.[doi:doi:10.3969/j.issn.1000-4440.2017.04.001]
WANG Jian,ZHANG Shan-lei,ZHAO Chun-fang,et al.Analysis of genetic effects of GW2 and GS3 genes in rice[J].,2017,(04):721.[doi:doi:10.3969/j.issn.1000-4440.2017.04.001]
[12]梁文化,孙旭超,陈涛,等.水稻GLW7基因功能标记的开发和基因效应分析[J].江苏农业学报,2020,(02):257.[doi:doi:10.3969/j.issn.1000-4440.2020.02.001]
LIANG Wen-hua,SUN Xu-chao,CHEN Tao,et al.Development of functional markers of GLW7 and gene effect analysis in rice[J].,2020,(04):257.[doi:doi:10.3969/j.issn.1000-4440.2020.02.001]