[1]惠小涵,程婷婷,柯卫东,等.莲藕PPO基因密码子偏好性特征分析[J].江苏农业学报,2020,(02):438-446.[doi:doi:10.3969/j.issn.1000-4440.2020.02.026]
 HUI Xiao-han,CHENG Ting-ting,KE Wei-dong,et al.Analysis on codon preference of PPO gene in lotus root[J].,2020,(02):438-446.[doi:doi:10.3969/j.issn.1000-4440.2020.02.026]
点击复制

莲藕PPO基因密码子偏好性特征分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
438-446
栏目:
园艺
出版日期:
2020-04-30

文章信息/Info

Title:
Analysis on codon preference of PPO gene in lotus root
作者:
惠小涵1程婷婷1柯卫东2郭宏波1
(1.西北农林科技大学化学与药学院,陕西杨凌712100;2.武汉市农业科学院蔬菜研究所,湖北武汉4300065)
Author(s):
HUI Xiao-han1CHENG Ting-ting1KE Wei-dong2GUO Hong-bo1
(1.College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China;2.Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China)
关键词:
莲藕PPO密码子偏好性
Keywords:
lotus rootpolyphenol oxidase (PPO)codonpreference
分类号:
S645.1
DOI:
doi:10.3969/j.issn.1000-4440.2020.02.026
文献标志码:
A
摘要:
为了解莲藕多酚氧化酶(PPO)基因密码子使用偏好性、不同物种中PPO基因同源关系及异源表达受体,本研究运用 CondonW 和 EMBOSS 程序对莲藕PPO基因密码子进行分析。结果表明,莲藕PPO基因偏好性较弱但偏好于G/C结尾的密码子,其中高频密码子有 24 个(同义密码子相对使用度>1),偏好性最强的有 3 个(同义密码子相对使用度>2)。用SPSS和MEGA软件对34种单子叶和双子叶植物的 PPO 密码子进行偏性比较和聚类分析,发现不同物种PPO基因存在不同密码子偏好模式,多数单子叶植物PPO 基因密码子偏好性比双子叶植物强。PPO 密码子相关性分析结果表明,莲藕 PPO 密码子使用偏好主要受突变压力的影响。在异源转化受体选择中,大肠杆菌真核表达系统适合莲藕PPO的异源表达,拟南芥则是莲藕PPO转基因的理想受体。莲藕PPO密码子偏好模式分析为后续的PPO基因遗传转化研究提供了理论依据。
Abstract:
To explore the codon usage preference of polyphenol oxidase(PPO) gene in lotus root, the homology of PPO gene in different species and heterologous expression receptors, the codon of PPO gene was analyzed by CondonW and EMBOSS programs. The results showed that the PPO gene favored codons ending in G or C. There were 24 high-frequency codons (relative synoymous codon usage>1), and three codons (relative synoymous codon usage>2) had the strongest preference. The PPO codon bias of 34 monocotyledonous and dicotyledonous plants was analyzed by SPSS and MEGA software. It was found that PPO genes from different species had different codon preference patterns, and most monocotyledonous PPO genes had stronger codon preference than dicotyledons. Correlation analysis of PPO codon indicated that the PPO codon usage preference in lotus root was mainly affected by mutation. In the selection of heterologous transforming receptors, eukaryotic expression system of Escherichia coli is suitable for heterologous expression of PPO in lotus root, and Arabidopsis thaliana is an ideal receptor for PPO transgene. The PPO codon preference pattern analysis of lotus root provides a theoretical basis for the subsequent study of PPO gene transformation.

参考文献/References:

[1]CASKEY C T, TOMPKINS R, SCOLNICK E, et al. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis[J]. Science, 1968, 162(3849):135-138.
[2]CHAN C, PHAM P, DEDON P C, et al. Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses[J]. Genome Biology, 2018, 19(1):228.
[3]QUAX T F, CLAASSENS N, SLL D, et al. Codon bias as a means to fine-tune gene expression[J]. Molecular Cell, 2015, 59(2):149-161.
[4]GINGOLD H, DAHAN O, PILPEL Y. Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome.[J]. Nucleic Acids Research, 2012, 40(20):53-63.
[5]PLOTKIN J B, KUDLA G. Synonymous but not the same: the causes and consequences of codon bias[J]. Nature Reviews Genetics, 2010, 12(1):32-42.
[6]GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J. Codon bias and heterologous protein expression[J]. Trends in Biotechnology, 2004, 22(7):346-353.
[7]刁英,韩延闯,何建军,等. 莲藕研究进展[J]. 氨基酸和生物资源, 2004, 26(1):8-11.
[8]MAYER A M, HAREL E. Polyphenol oxidases in plants[J]. Phytochemistry, 1979, 18(2):193-215.
[9]YORUK R, MARSHALL M R. Physicochemical properties and function of plant polyphenol oxidase: a review.[J]. Journal of Food Biochemistry, 2010, 27(5):361-422.
[10]LILLY V V, HAARD N F. Polyphenol oxidases and peroxidases in fruits and vegetables[J]. C R C Critical Reviews in Food Technology, 2009, 15(1):49-127.
[11]吴彦庆,赵大球,陶俊,等. 芍药花色调控基因的密码子使用模式及其影响因素分析[J]. 中国农业科学, 2016, 49(12):2368-2378.
[12]雷梦林,冯瑞云,郝雅萍,等. 小麦抗逆相关转录因子DREB密码子偏好性特征分析[J]. 麦类作物学报, 2019, 39(1):5-13.
[13]TORRE A R D L, LIN Y C, PEER Y V D, et al. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families [J]. Genome Biol Evol, 2015, 7 (4): 1002-1015.
[14]赖瑞联,冯新,陈瑾,等. 橄榄转录组密码子使用偏好性及其影响因素[J]. 核农学报, 2019,33(1):31-38.
[15]PEDEN J F. Analysis of codon usage [J]. Univ Nott, 2000, 90 (1): 73-74.
[16]SHARP P M, LI W H. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. J Mol Evol, 1986, 24 (1): 28-38.
[17]RICE P, LONGDEN I, BLEASBY A. EMBOSS: the european molecular biology open software suite [J]. Trends Genet, 2000, 16 (6): 276-277.
[18]SHI X, WANG X, LI Z, et al. Nucleotide substitution pattern in rice paralogues: implication for negative correlation between the synonymous substitution rate and codon usage bias [J]. Gene, 2006, 376 (2): 199-206.
[19]MURRAY E E, LOTZER J, EBERLE M. Codon usage in plant genes[J]. Nucleic Acids Research, 1989, 17(2): 477.
[20]SUEOKA N. Directional mutation pressure and neutral molecular evolution.[J]. Proceedings of the National Academy of Sciences, 1988, 85(8):2653-2657.
[21]WRIGHT F . The effective number of codons used in a gene[J]. Gene, 1990, 87(1):23-29.
[22]SUEOKA N . Two aspects of DNA base composition : G+C content and translation-coupled deviation from intra-strand rule of A=T and G=C[J]. J Mol Evol,1999,49(1):49-62.
[23]程丽,李宜奎,李晓丹,等. 植物CPR基因密码子偏好性及聚类分析[J]. 分子植物育种, 2017, 15 (5): 1672-1682.
[24]刘潮,韩利红,王海波,等. 谷子类甜蛋白基因家族的鉴定与密码子偏性分析[J]. 西北农业学报,2018,27(1):52-61.
[25]RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110.
[26]LINSMAIER E M, FOLKE S. Organic growth factor requirements of tobacco tissue cultures[J]. Physiologia Plantarum, 2010, 18(1):100-127.
[27]黄雪龙,单敏,陈烨,等. 鸭疫里默氏杆菌Tet(X)基因原核表达及其功能鉴定[J]. 南方农业学报,2019,50(4):844-850.
[28]HANAHAN D. Studies on transformation of Escherichia coli with plasmids[J]. Journal of Molecular Biology, 1983, 166(4):557-580.
[29]白雪,张慧莉,黄冲,等. 解淀粉芽孢杆菌草酸脱羧酶基因的克隆、原核表达与活力测定[J]. 江苏农业科学,2019,47(12):66-70.
[30]刘政伟,李瑞芳,张瑞玲. 热带念珠菌β-葡聚糖合成酶KRE9基因原核表达及其比活力测定[J]. 南方农业学报, 2018, 49(4):628-634.
[31]GASCH A P, SPELLMAN P T, KAO C M, et al. Genomic expression programs in the response of yeast cells to environmental changes.[J]. Molecular Biology of the Cell, 1998, 11(12):4241-4257.
[32]KURLAND C G. Codon bias and gene expression[J]. Febs Letters, 1991, 285(2):165-169.
[33]FEDOROV A, SAXONOV S, GILBERT W. Regularities of context-dependent codon bias in eukaryotic genes[J]. Nucleic Acids Research, 2002, 30(5):1192-1197.
[34]HERSHBERG R, PETROV D A. Selection on codon bias[J]. Annual Review of Genetics, 2008, 42(42):287-299.

备注/Memo

备注/Memo:
收稿日期:2019-10-29基金项目:国家重点研发计划项目(2016YFD0100204-29);国家杨凌农业高新技术产业示范区科技攻关计划项目(201SF-08)作者简介:惠小涵(1996-),女,陕西渭南人,硕士研究生,主要从事多酚氧化酶基因家族在莲藕等植物中的功能研究。(E-mail)huixh@nwsuaf.edu.cn通讯作者:郭宏波,(E-mail)hbguo@nwsuaf.edu.cn
更新日期/Last Update: 2020-05-18