[1]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350-357.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
 WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(02):350-357.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
点击复制

华南地区土壤有机质含量高光谱反演()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
350-357
栏目:
耕作栽培·资源环境
出版日期:
2020-04-30

文章信息/Info

Title:
Predicting soil organic matter content in South China based on hyperspectral reflectance
作者:
王婷1234刘振华1234彭一平1234胡月明12345
(1.华南农业大学,广东广州510642;2.国土资源部建设用地再开发重点实验室,广东广州510642;3.广东省土地信息工程技术研究中心,广东广州510642;4.广东省土地利用与整治重点实验室,广东广州510642;5.青海大学农牧学院,青海西宁810016)
Author(s):
WANG Ting1234LIU Zhen-hua1234PENG Yi-ping1234HU Yue-ming12345
(1.South China Agricultural University, Guangzhou 510642, China;2.Key Laboratory of Construction Land Improvement, Ministry of Land and Resources, Guangzhou 510642, China;3.Guangdong Province Engineering Research Center for Land Information Technology, Guangzhou 510642, China;4.Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China;5.College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China)
关键词:
土壤有机质含量高光谱估测模型华南地区
Keywords:
soil organic matter contenthyperspectrumestimation modelSouth China
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2020.02.014
文献标志码:
A
摘要:
为实现对土壤有机质含量的快速监测,在对土壤有机质含量作倒数变换的同时将土壤高光谱数据进行多种数据变换处理,筛选出与土壤有机质含量倒数变换后相关性最高的光谱指标,最后构建了土壤有机质含量高光谱反演的最佳模型,实现对土壤有机质含量的反演。结果表明:估算土壤有机质含量的最佳光谱指标为反射率一阶微分波段组合R(587,126*R(734,049)*R(1 095,892),相关系数为0.769;在此基础上构建的土壤有机质含量高光谱反演模型最佳(Y=5×1016x3-5×1010x2+59 471.000 0x+0.101 1),其决定系数R2为0.65,均方根误差(RMSE)为0.040 mg/kg。将其验证样本预测值与实测值进行比较,平均相对误差为27.00%,RMSE为4.19 mg/kg。该验证结果证明利用该模型进行华南地区土壤有机质含量的快速监测是可行的。
Abstract:
In order to monitor soil organic matter content rapidly, the reciprocal transformation of soil organic matter content and a variety of data transformation processing on soil hyperspectral data were carried out. On this basis, the spectral index having the highest correlation with the content of soil organic matter after reciprocal transformation was selected to construct the best hyperspectral inversion model of soil organic matter content. The results indicated that the band combination R(587,126)×R(734,049)×R(1 095,892) was the best spectral index for estimating soil organic matter content, and the correlation coefficient was 0.769. The best hyperspectral inversion model constructed by the band combination was y = 5×1016x3 -5×1010x2+59 471.000 0x+0.101 1, with determination coefficient(R2) of 0.65 and root mean squared error (RMSE) of 0.040 mg/kg. In addition, the predicted value of the verified sample was compared with the measured value, the mean relative error (MRE) was 27.00%, and RMSE was 4.19 mg/kg. In conclusion, it is feasible to monitor the soil organic matter content in South China by using the model constructed in this study.

参考文献/References:

[1]李志洪,赵兰坡,窦森. 土壤学[M].北京:化学工业出版社,2005.
[2]BATIONO A, KIHARA J, VANLAUWE B, et al. Soil organic carbon dynamics, functions and management in West African agro-ecosystems[J]. Agricultural Systems, 2007, 94(1):13-25.
[3]李婧. 土壤有机质测定方法综述[J].分析试验室,2008,27 (S1):154-156.
[4]季天委. 重铬酸钾容量法中不同加热方式测定土壤有机质的比较研究[J].浙江农业学报,2005,17 (5):311-313.
[5]章涛,于雷. 土壤有机质高光谱估算模型研究进展[J]. 湖北农业科学,2017,56 (17):3205-3208.
[6]官晓,周萍,陈圣波. 基于地面实测光谱的土壤有机质含量预测[J]. 国土资源遥感,2014, 26(2):105-111.
[7]DHAWALE N M, ADAMCHUK V I, PRASHER S O, et al. Proximal soil sensing of soil texture and organic matter with a prototype portable mid‐infrared spectrometer[J]. European Journal of Soil Science, 2015, 66(4):661-669.
[8]袁征,李希灿,于涛,等. 高光谱土壤有机质估测模型对比研究[J].测绘科学,2014,39(5):117-120.
[9]栾福明,张小雷,熊黑钢,等. 基于不同模型的土壤有机质含量高光谱反演比较分析[J].光谱学与光谱分析,2013,33(1):196-200.
[10]侯艳军,塔西甫拉提·特依拜,买买提·沙吾提,等. 荒漠土壤有机质含量高光谱估算模型[J].农业工程学报,2014,30(16):113-120.
[11]STEVENS A, WESEMAEL B V. Soil organic carbon stock in the Belgian Ardennes as affected by afforestation and deforestation from 1868 to 2005[J]. Forest Ecology & Management, 2008, 256(8):1527-1539.
[12]CROFT H, KUHN N J, ANDERSON K. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems[J]. Catena, 2012, 94(9):64-74.
[13]于雷,洪永胜,耿雷,等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报,2015,31(14):103-109.
[14]曾招兵,汤建东,刘一峰,等. 广东耕地土壤有机质的变化趋势及其驱动力分析[J]. 土壤, 2013,45 (1):84-90.
[15]AL-ABBAS A H, SWAIN P H, BAUMGARDNER M F. Relating organic matter and clay content to the multispectral radiance of soils [J]. Soil Science, 1972, 114(6):477-485.
[16]徐彬彬,戴昌达. 南疆土壤光谱反射特性与有机质含量的相关分析[J]. 科学通报, 1980,25(6):282-284.
[17]刘焕军,张柏,赵军,等. 黑土有机质含量高光谱模型研究[J]. 土壤学报,2007,44(1):27-32.
[18]CLOUTIS E A. Review article: Hyperspectral geological remote sensing: evaluation of analytical techniques[J]. International Journal of Remote Sensing, 1996, 17(12):2215-2242.
[19]FUAN T, WILLIAM D. A derivative-aided hyperspectral image analysis system for land-cover classification [J]. IEEE Transaction on Geoscience and Remote Sensing, 2002, 10(2): 416-425.
[20]卢艳丽,白由路,杨俐苹,等. 基于高光谱的土壤有机质含量预测模型的建立与评价[J]. 中国农业科学,2007,40(9):1989-1995.
[21]李媛媛,李微,刘远,等. 基于高光谱遥感土壤有机质含量预测研究[J].土壤通报,2014,45(6):1313-1318.

相似文献/References:

[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
 LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(02):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]乔娟峰,熊黑钢,王小平,等.基于最优模型的荒地土壤有机质含量空间反演[J].江苏农业学报,2018,(01):68.[doi:doi:10.3969/j.issn.1000-4440.2018.01.010]
 QIAO Juan-feng,XIONG Hei-gang,WANG Xiao-ping,et al.Spatial inversion of soil organic matter content in wasteland based on optimal model[J].,2018,(02):68.[doi:doi:10.3969/j.issn.1000-4440.2018.01.010]
[3]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(02):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[4]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(02):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[5]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
 LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(02):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[6]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
 ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[7]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
 MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(02):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[8]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(02):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[9]潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报,2022,38(06):1550.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
 PAN Yue,CAO Hong-xin,QI Jia-guo,et al.Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining[J].,2022,38(02):1550.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
[10]樊泳灼,李新国.湖滨绿洲棕漠土有机碳含量高光谱估算[J].江苏农业学报,2023,(06):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
 FAN Yong-zhuo,LI Xin-guo.Hyperspectral prediction of organic carbon content of brown desert soil in the lakeside oasis[J].,2023,(02):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]

备注/Memo

备注/Memo:
收稿日期:2019-06-04基金项目:广东省科技计划项目(2017A050501031);青海省科技计划项目(2017-ZJ-730);广州市科技计划项目(201807010048);广东省林业科技创新项目(2015KJCX047)作者简介:王婷(1994-),女,广东阳江人,硕士研究生,主要从事定量遥感研究。(E-mail)18344263281@163.com通讯作者:刘振华,(E-mail)grassmountain@163.com
更新日期/Last Update: 2020-05-18