[1]梁文化,孙旭超,陈涛,等.水稻GLW7基因功能标记的开发和基因效应分析[J].江苏农业学报,2020,(02):257-264.[doi:doi:10.3969/j.issn.1000-4440.2020.02.001]
 LIANG Wen-hua,SUN Xu-chao,CHEN Tao,et al.Development of functional markers of GLW7 and gene effect analysis in rice[J].,2020,(02):257-264.[doi:doi:10.3969/j.issn.1000-4440.2020.02.001]
点击复制

水稻GLW7基因功能标记的开发和基因效应分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
257-264
栏目:
遗传育种·生理生化
出版日期:
2020-04-30

文章信息/Info

Title:
Development of functional markers of GLW7 and gene effect analysis in rice
作者:
梁文化孙旭超陈涛岳红亮田铮赵凌赵庆勇赵春芳朱镇张亚东王才林
(江苏省农业科学院粮食作物研究所/江苏省优质水稻工程技术研究中心/国家水稻改良中心南京分中心,江苏南京210014)
Author(s):
LIANG Wen-huaSUN Xu-chaoCHEN TaoYUE Hong-liangTIAN ZhengZHAO LingZHAO Qing-yong ZHAO Chun-fangZHU ZhenZHANG Ya-dongWANG Cai-lin
(Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China)
关键词:
水稻粒型GLW7基因功能分子标记
Keywords:
ricegrain shapeGLW7 genefunctional molecular marker
分类号:
S511.032
DOI:
doi:10.3969/j.issn.1000-4440.2020.02.001
文献标志码:
A
摘要:
根据水稻粒长和粒质量调控基因GLW7已知功能位点的核苷酸差异设计分子标记,并对国内外搜集的315份籼、粳稻品种资源进行基因型检测,分析其不同基因型的分布。同时,通过粒型性状的测定,分析该基因的遗传效应,评估其育种利用价值。结果表明,设计的功能标记能准确、有效地区分出201 bp和190 bp 2种带型,即大粒(Large grain haplotype,LGH)和小粒(Small grain haplotype,SGH)2种等位变异。从籼、粳亚种间的基因型分布来看,籼亚种中LGH和SGH的比例分别为95.65%和4.35%,而粳亚种中LGH和SGH比例分别为25.50%和74.50%,2种等位变异的分布在籼粳亚种间存在明显差异。粒型的测定结果表明,含不同等位变异的品种在粒长、粒厚、长宽比和千粒质量上存在显著或极显著差异,而粒宽则没有明显差异。进一步通过籼、粳分类分析发现,亚种间2种等位变异对粒型的效应并不完全一致,但都具有提高籽粒质量的作用。
Abstract:
In this study, molecular markers were designed according to the nucleotide differences of functional loci of GLW7 gene regulating rice grain length and grain weight. Genotypes of 315 indica and japonica varieties collected at home and abroad were detected, and the distribution of different genotypes was analyzed. Simultaneously, the genetic effects of the gene were analyzed, and its breeding value was evaluated by the determination of grain shape traits. The results showed that the designed functional markers could accurately and effectively distinguish 201 bp and 190 bp bands, which was corresponding to large grain haplotype (LGH) and small grain haplotype (SGH), respectively. According to the genotype distribution between indica and japonica subspecies, the proportion of LGH and SGH in indica subspecies was 95.65% and 4.35%, while that was 25.50% and 74.50% in japonica subspecies, respectively. It was indicated that there was a significant difference in genotype distribution between two rice subspecies. The results of the grain size measurement showed that there were significant or extremely significant differences in grain length, grain thickness, length-width ratio and thousand grain weight among varieties with different allele variations, but there was no significant difference in grain width. Further analysis showed that the genetic effects of two allelic variations on grain shape were not identical between indica and japonica varieties, but the two allelic variations could increase grain weight.

参考文献/References:

[1]HUANG R Y,JIANG L G,ZHENG J S,et al. Genetic bases of rice grain shape: so many genes, so little known[J]. Trends in Plant Science,2013,18(4):218-226.
[2]徐正进,陈温福,马殿荣,等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报,2004,30(9):894-900.
[3]FAN C C,XING Y Z,MAO H L,et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics,2006,112(6):1164-1171.
[4]MAO H L,SUN S Y,YAO J L,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences,2010,107(45): 19579-19584.
[5]SUN S Y,WANG L,MAO H L,et al. A G-protein pathway determines grain size in rice[J]. Nature Communications,2018,9(1):851.
[6]QI P,LIN Y S,SONG X J,et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research,2012,22(12): 1666-1680.
[7]ZHANG X J,WANG J F,HUANG J,et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences,2012,109(52):21534-21539.
[8]SI L Z,CHEN J Y,HUANG X H,et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4): 447-456.
[9]YING J Z,MA M,BAI C,et al. TGW3 , a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018,11(5): 750-753.
[10]YU J P,XIONG H Y,ZHU X Y,et al. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology,2017,15(1): 28.
[11]LIU Q,HAN R,WU K,et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018,9(1): 852.
[12]ZHAO D S,LI Q F,ZHANG C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018,9(1): 1240.
[13]SONG X J,HUANG W,SHI M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5): 623-630.
[14]SHOMURA A,IZAWA T,EBANA K,et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008,40(8): 1023-1028.
[15]WENG J F,GU S H,WAN X Y,et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research,2008,18(12): 1199-1209.
[16]LI Y B,FAN C C,XING Y Z,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011,43(12): 1266-1269.
[17]WANG S K,LI S,LIU Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(8): 949-954.
[18]WANG S K,WU K,YUAN Q B,et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012,44(8): 950-954.
[19]HUANG K,WANG D K,DUAN P G, et al. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice [J]. Plant Journal, 2017,91(5): 849-860.
[20]WANG S S,WU K,QIAN Q,et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research, 2017,27(9): 1142-1156.
[21]程丽, 胡茂龙, 浦惠明, 等.M342抗除草剂基因CAPS标记的开发与应用[J]. 江苏农业学报, 2019,35(2):241- 247.
[22]丁丹,张亚东,赵春芳,等. 水稻粒长基因GS3和qGL3功能标记的设计及应用[J]. 江农业学报,2014, 30(6):1191-1197.
[23]王军,杨杰,许祥,等. 水稻千粒重基因TGW6功能标记的开发与利用[J]. 中国水稻科学,2014,28(5):473-478.
[24]裔传灯,王德荣,蒋伟,等. 水稻粒形基因GW8的功能标记开发和单体型鉴定[J]. 作物学报,2016,42(9): 1291-1297.
[25]丁丹. 水稻5个粒型相关基因的分子标记开发与效应分析[D]. 南京:南京农业大学,2014.
[26]卢扬江,郑康乐. 提取水稻DNA的一种简易方法[J]. 中国水稻科学,1992,6(1):47-48.
[27]任海,吕小红,杜萌. 多抗水稻分子标记辅助育种方法[J]. 江苏农业科学,2017,45(19):154-158.
[28]孙大元,周丹华,张景欣,等. 广谱抗源H4中2个主效抗病基因的单基因系构建及评价[J]. 江苏农业学报,2017,33(1): 1-5.
[29]陈红萍,刘开浪,杨宙,等. 利用分子标记辅助选择改良水稻稻瘟病抗性[J]. 湖北农业科学, 2019,58(2):29-32.
[30]刘冬梅,娄喜艳,吴狄,等. 基于棉花转录组测序的SSR分子标记的开发[J]. 江苏农业科学,2019,47(7):32-35.
[31]田大刚,杨小双 ,陈子强,等. 利用分子标记辅助选择改良闽恢3301稻瘟病抗性[J]. 南方农业学报,2019,50(8):1665-1670.
[32]李扬,徐小艳,严明,等. 利用GS3基因功能性分子标记改良水稻粒型的研究[J]. 上海农业学报,2016,(1):1-5.
[33]NAN J Z,FENG X M,WANG C,et al. Improving rice grain length through updating the GS3 locus of an elite variety Kongyu 131[J]. Rice, 2018,11(1): 21.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(02):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(02):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(02):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(02):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(02):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(02):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(02):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(02):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(02):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(02):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]王建,张善磊,赵春芳,等.水稻粒型基因GW2和GS3遗传效应分析[J].江苏农业学报,2017,(04):721.[doi:doi:10.3969/j.issn.1000-4440.2017.04.001]
 WANG Jian,ZHANG Shan-lei,ZHAO Chun-fang,et al.Analysis of genetic effects of GW2 and GS3 genes in rice[J].,2017,(02):721.[doi:doi:10.3969/j.issn.1000-4440.2017.04.001]
[12]梁文化,孙旭超,岳红亮,等.水稻超大籽粒形成的重要基因和调控通路的转录组分析[J].江苏农业学报,2020,(04):801.[doi:doi:10.3969/j.issn.1000-4440.2020.04.001]
 LIANG Wen-hua,SUN Xu-chao,YUE Hong-liang,et al.Transcriptome analysis on critical genes and key pathways in extra-large grain development of rice[J].,2020,(02):801.[doi:doi:10.3969/j.issn.1000-4440.2020.04.001]

备注/Memo

备注/Memo:
收稿日期:2019-07-30基金项目:国家自然科学基金面上项目(31771761);国家自然科学基金项目(31901485);江苏省农业科技自主创新基金项目[CX(17)3009];江苏省农业科学院院基金项目(003116111653);江苏省农业科学院粮食作物研究所基金项目(LZS17-6);江苏省农业生物学重点实验室开放课题(4911707Z201705);江苏省重点研发计划项目(BE2018357);国家现代农业产业技术体系项目(CARS-01-62)作者简介:梁文化(1984-),男,山东临沂人,博士,助理研究员,研究方向为水稻遗传育种。(E-mail)liangwenhua0228@126.com通讯作者:张亚东,(Tel)02584390314;(E-mail)zhangyd@ jaas.ac.cn;王才林,(Tel)02584390317;(E-mail)clwang@ jaas.ac.cn
更新日期/Last Update: 2020-05-18