[1]张晟,张徐洁,赵远,等.不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响[J].江苏农业学报,2019,(05):1102-1111.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
 ZHANG Sheng,ZHANG Xu-jie,ZHAO Yuan,et al.Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil[J].,2019,(05):1102-1111.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
点击复制

不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1102-1111
栏目:
耕作栽培·资源环境
出版日期:
2019-10-31

文章信息/Info

Title:
Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil
作者:
张晟1张徐洁1赵远1张玉虎2胡茜1荆玉林2符菁1
(1.常州大学环境与安全工程学院,江苏常州213016;2.首都师范大学资源环境与旅游学院,北京100048)
Author(s):
ZHANG Sheng1ZHANG Xu-jie1ZHAO Yuan1ZHANG Yu-hu2HU Qian1JING Yu-lin2FU Jing1
(1.School of Environmental and Safety Engineering, Changzhou University, Changzhou 213016, China;2.College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)
关键词:
生物炭固碳减排高通量测序技术静态箱-气相色谱法排放通量微生物多样
Keywords:
biocharcarbon sequestration and mitigationhigh throughput sequencing technologystatic chamber-gas chromatographyemission fluxmicrobiological diversity
分类号:
S181
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.015
文献标志码:
A
摘要:
通过田间水稻培养试验,采用静态箱-气相色谱法和高通量测序技术,研究了不同温度条件下制备的生物炭施用对稻田作物产量及土壤中CO2、CH4、N2O排放通量以及累积排放量的影响,以及对土壤微生物群落结构的影响。试验设置4个处理:对照(CK)、施用300 ℃制备的生物炭(DY-300)、施用500 ℃制备的生物炭(DY-500)、施用700 ℃制备的生物炭(DY-700)。结果表明,与对照相比,各生物炭处理CH4、N2O累积排放量削减,生物炭的施入优化了土壤微生物群落结构。DY-300、DY-500、DY-700处理中,CH4累积排放量抑制率分别为39.2%、49.1%和24.0%,N2O累积排放量抑制率分别为30.0%、39.8%和13.1%,Chao1指数增幅为2.5%~29.8%。而生物炭施用对CO2排放的抑制作用不明显。总之,500 ℃制备的生物炭抑制温室气体排放的效果最佳,700 ℃制备的生物炭具有对微生物群落结构的优化作用以及稻田作物的增产作用。
Abstract:
A field experiment with paddy soils was conducted using static chamber-gas chromatography and high throughput sequencing technology to investigate effects of biocarbon preparation on crop yield, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) emissions and accumulated emissions in different fields under different temperature conditions. Moreover, the analysis of soil microbial diversity by biochar was discussed. The field experiment included four treatments as following, control group(CK), adding pyrolyzed biochar at 300 ℃(DY-300), adding pyrolyzed biochar at 500 ℃(DY-500), adding pyrolyzed biochar at 700 ℃(DY-700). Results showed that compared with the control group, the cumulative emissions of CH4 and N2O were significantly reduced under biochar treatments. Simultaneously, the microbial community structure was optimized by the application of biochar. In the experimental group of DY-300, DY-500 and DY-700, CH4 cumulative emission inhibition rate was 39.2%, 49.1% and 24.0%, and the N2O cumulative emission inhibition rate was 30.0%, 39.8% and 13.1%, and Chao1 index increased by 2.5%-29.8%. However, the inhibitory effect of biochar on CO2 emission was not obvious. In conclusion, the biochar prepared at 500 ℃ has the best effect on the inhibition of greenhouse gases. The biochar prepared at 700 ℃ has the best effect on the diversity of microbial community structure and the yield increase of paddy crops.

参考文献/References:

[1]郭树芳,齐玉春,罗小玲,等.滴灌对干旱区春小麦田土壤CO2、N2O排放及综合增温潜势的影响[J].农业环境科学学报,2016,35(4):792-800.
[2]王永生,张爱平,刘汝亮,等.优化施氮对宁夏引黄灌区稻田CO2、CH4和N2O通量的影响[J].农业资源与环境学报,2016,35(6):1218-1224.
[3]胡泓,王东启,李杨杰,等.崇明东滩芦苇湿地温室气体排放通量及其影响因素[J].环境科学研究,2014,27(1):43-50.
[4]SOLOMON S.IPCC (2007):Climate change the physical science basis[J].American Geophysical Union,2007,9(1):123-124.
[5]周锡跃,李凤博,徐春春,等.浙江稻田人工湿地生态系统服务价值评估[J].浙江农业科学,2009,1(5):971-974.
[6]黄华,王雅雄,唐景春,等.不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J].环境科学,2014,35(5):1884-1890.
[7]朱德峰,陈惠哲,徐一成,等.我国双季稻生产机械化制约因子与发展对策[J].中国稻米,2013,19(4):1-4.
[8]龚静静,胡宏祥,朱昌雄,等. 秸秆还田对农田生态环境的影响综述[J]. 江苏农业科学,2018,46(23):36-40.
[9]中国国际经济交流中心课题组.中国实施绿色发展的公共政策研究[M].北京:中国经济出版社,2013:102-110.
[10]黄芬,韦红群,曹建华. 土壤微生物对玉米秸秆还田的响应特征——亚热带石灰土与红壤的典型对比[J]. 南方农业学报,2018,49(1):22-29.
[11]HE K,ZHANG J,ZENG Y,et al.Households willingness to accept compensation for agricultural waste recycling:taking biogas production from livestock manure waste in Hubei,P. R. China as an example[J].Journal of Cleaner Production,2016,131:410-420.
[12]王舒娟,蔡荣.农户秸秆资源处置行为的经济学分析[J].中国人口·资源与环境,2014,24(8):162-167.
[13]MEYER S, GLASER B, QUICKER P. Technical,economical,and climate-related aspects of biochar production technologies:A literature review[J].Environmental Science & Technology,2011,45(22):9473-9483.
[14]SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J].Advances in Agronomy,2010,105:47-82.
[15]ZIMMERMAN A R, GAO B, AHN M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J].Soil Biology & Biochemistry,2011,43(6):1169-1179.
[16]陈心想,耿增超,王森,等.施用生物炭后塿土土壤微生物及酶活性变化特征[J].农业环境科学学报,2014,33(4):751-758.
[17]李亚森,丁松爽,殷全玉,等.多年施用生物炭对河南烟区土壤呼吸的影响[J].环境科学,2019(2):1-17.
[18]BRUUN E W, AMBUS P, EGSGAARD H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J].Soil Biology & Biochemistry,2012,46:73-79.
[19]SINGH R, BABU J N, KUMAR R, et al. Multifaceted application of crop residue biochar as a tool for sustainable agriculture:An ecological perspective[J].Ecological Engineering,2015,77:324-347.
[20]叶丹丹,谢立勇,郭李萍,等. 华北平原典型农田CO2和N2O排放通量及其与土壤养分动态和施肥的关系[J].中国土壤与肥料,2011(3):15-20.
[21]赵伯康,茅玉兰,赵玉兰.丹阳市主要粮食作物品种应用布局规划[J].北方水稻,2016,46(4):60-61.
[22]宋卫兵.南陵县双季晚稻武运粳19号的特征特性及栽培技术[J].现代农业科技,2011(13):90.
[23]金梁,魏丹,李玉梅,等.生物炭制备及其稳定性估测方法研究进展[J].农业资源与环境学报,2015,32(5):423-428.
[24]宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学,2005,26(4):7-12.
[25]WANG Y S, WANG Y H. Quick measurement of CH4,CO2 and N2O emissions from a short-plant ecosystem[J].Advances in Atmospheric Sciences,2003,20(5):842-844.
[26]ZHONG J, WEI Y, WAN H , et al. Greenhouse gas emission from the total process of swine manure composting and land application of compost[J].Atmospheric Environment,2013,81(2):348-355.
[27]陈中云,闵航,陈美慈,等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,2001,21(9):1498-1505.
[28]魏雪勤,孙楠,张旭博,等.基于不同施肥模式添加生物炭后菜地土壤CO2释放特征及不同形态碳含量变化[J].中国农业科学,2016,49(18):3578-3587.
[29]JEFFREYL S, HAROLDP C, VANESSAL B . The effect of young biochar on soil respiration[J].Soil Biology & Biochemistry,2010,42(12):2345-2347.
[30]JONES D L, MURPHY D V, KHALID M, et al.Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated[J].Soil Biology & Biochemistry,2011,43(8):1723-1731.
[31]王明星.中国稻田甲烷排放[M].北京:科学出版社,2001:72-83.
[32]麻婷婷,承磊,郑珍珍,等.不同pH缓冲液对由乙酸产甲烷菌群结构的影响[J].微生物学报,2014,54(12):1453-1461.
[33]SCHIMEL J. Global change:Rice,microbes and methane[J].Nature,2000,403(6768):375-377.
[34]蒋静艳,黄耀.农业土壤N2O排放的研究进展[J].农业环境科学学报,2001,20(1):51-54.
[35]CAYUELA M L, ZWIETEN L V, SINGH B P, et al. Biochars role in mitigating soil nitrous oxide emissions:A review and meta-analysis[J].Agriculture Ecosystems & Environment,2014,191:5-16.
[36]黄益宗,张福珠,刘淑琴,等.化感物质对土壤N2O释放影响的研究[J].环境科学学报,1999,19(5):478-482.
[37]王晓辉,郭光霞,郑瑞伦,等.生物炭对设施退化土壤氮相关功能微生物群落丰度的影响[J].土壤学报,2013,3(3):624-631.
[38]STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J].Soil Biology & Biochemistry,2009,41(6):1301-1310.
[39]JONES D L, MURPHY D V, KHALID M, et al. Short-term bio-char-induced increase in soil CO2 release is both biotically and abiotically mediated[J].Soil Biology and Biochemistry,2011,43(8):1723-1731.
[40]LUO Y, DURENKAMP M, DE NOBILI M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J].Soil Biology and Biochemistry,2011,43(11):2304-2314.

相似文献/References:

[1]兰 天,张 辉,刘 源,等.玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J].江苏农业学报,2016,(02):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
 LAN Tian,ZHANG Hui,LIU Yuan,et al.Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J].,2016,(05):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
[2]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(05):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[3]刘杰,韩士群,齐建华,等.生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
 LIU Jie,HAN Shi-qun,QI Jian-hua,et al.Influence of biochar content on in-situ denitrification of sediment and microbial activity[J].,2016,(05):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
[4]乔光,田田,洪怡,等.生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J].江苏农业学报,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
 QIAO Guang,TIAN Tian,HONG Yi,et al.Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J].,2017,(05):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
[5]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(05):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[6]范如芹,罗佳,张振华.复合调理剂对栽培基质性能及蔬菜生长的影响[J].江苏农业学报,2018,(04):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
 FAN Ru-qin,LUO Jia,ZHANG Zhen-hua.Effects of composite conditioner on properties of soilless conditioner and vegetable growth[J].,2018,(05):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(05):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[9]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(05):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
[10]李佳,邓钧尹,周伟,等.生物炭与硝化抑制剂对菜地综合温室效应的影响[J].江苏农业学报,2020,(05):1205.[doi:doi:10.3969/j.issn.1000-4440.2020.05.018]
 LI Jia,DENG Jun-yin,ZHOU Wei,et al.Effects of biochar and nitrification inhibitor on the global warming potentials in vegetable field[J].,2020,(05):1205.[doi:doi:10.3969/j.issn.1000-4440.2020.05.018]

备注/Memo

备注/Memo:
收稿日期:2018-12-12 基金项目:国家科技支撑计划项目(2015BAC02B02-01);常州市科技支撑计划(社会发展)项目(CE20175060) 作者简介:张晟(1976-),男,江苏常州人,博士,高级工程师,主要从事土壤修复工程及工业水处理技术研究。(E-mail) zhangsheng@cczu.edu.cn 通讯作者:赵远, (E-mail) zhaoyuan@cczu.edu.cn
更新日期/Last Update: 2019-11-11