参考文献/References:
[1]刘国奇, 邓铭, 李晨静. 融合RGB颜色空间的植物图像分割模型[J]. 郑州大学学报(理学版), 2019, 51(1):21-26.
[2]关强,薛河儒,姜新华.基于二维OTSU的田间植物图像分割方法[J].江苏农业科学,2015,43(12):437-440.
[3]赵金阳,冯全,王书志,等.一种改进的葡萄叶片自动分割算法[J].中国农业大学学报,2017,22(11):140-147.
[4]张会敏,谢泽奇,张善文,等.基于WT-OTSU算法的植物病害叶片图像分割方法[J].江苏农业科学,2017,45(18):194-196.
[5]张善文,张晴晴,齐国红,等.基于改进K中值聚类的苹果病害叶片分割方法[J].江苏农业科学,2017,45(18):205-208.
[6]刘立波,程晓龙,赖军臣. 基于改进全卷积网络的棉田冠层图像分割方法[J]. 农业工程学报,2018,34(12):193-201.
[7]段凌凤,熊雄,刘谦,等.基于深度全卷积神经网络的大田稻穗分割[J].农业工程学报,2018,34(12):202-209.
[8]马浚诚,杜克明,郑飞翔,等.基于卷积神经网络的温室黄瓜病害识别系统[J].农业工程学报,2018,34(12):186-192.
[9]FERREIRA A D S, FREITAS D M, SILVA G G D, et al. Weed detection in soybean crops using ConvNets [J]. Computers and Electronics in Agriculture, 2017, 143: 314-324.
[10]DECHANT C, WIESNER-HANKS T, CHEN S, et al. Automatedidentification of northern leaf blight-infected maize plants from field imagery using deep learning [J]. Phytopathology, 2017,107: 1426-1432.
[11]DING W, TAYLOR G. Automatic moth detection from trap images for pest management [J]. Computers and Electronics in Agriculture, 2016, 123: 17-28.
[12]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4):640-651.
[13]ALEX K, ILYA S, GEOFFREY E H. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 1097-1105.
[14]GHOSAL S, BLYSTONE D, SINGH A K, et al. An explainable deep machine vision framework for plant stress phenotyping [J]. Proceedings of the National Academy of Sciences, 2018, 115(18):4613-4618.
[15]BAI X, LI X, FU Z, et al. A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images [J]. Computers and Electronics in Agriculture, 2017, 136: 157-165
[16]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(4):834-848.
[17]于洪涛,袁明新,谢丰,等.一种融合动态OTSU和几何特征的苹果视觉分割算法[J].信息技术,2018,42(8):39-43.
[18]杨信廷,刘蒙蒙,许建平,等.自动监测装置用温室粉虱和蓟马成虫图像分割识别算法[J].农业工程学报,2018,34(1):164-170.
[19]REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
相似文献/References:
[1]张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
ZHANG Shan-wen,XIE Ze-qi,ZHANG Qing-qing.Application research on convolutional neural network for cucumber leaf disease recognition[J].,2018,(05):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
[2]杨晋丹,杨涛,苗腾,等.基于卷积神经网络的草莓叶部白粉病病害识别[J].江苏农业学报,2018,(03):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
YANG Jin-dan,YANG Tao,MIAO Teng,et al.Recognition of powdery mildew disease of strawberry leaves based on convolutional neural network[J].,2018,(05):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
[3]丁承君,刘强,田军强,等.信息物理系统事件驱动下的农业气象监测系统[J].江苏农业学报,2018,(04):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
DING Cheng-jun,LIU Qiang,TIAN Jun-qiang,et al.Agro-meteorological monitoring system based on event-driven modeling of cyber-physical system[J].,2018,(05):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
[4]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(05):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[5]孙云云,江朝晖,董伟,等.基于卷积神经网络和小样本的茶树病害图像识别[J].江苏农业学报,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
SUN Yun-yun,JIANG Zhao-hui,DONG Wei,et al.Image recognition of tea plant disease based on convolutional neural network and small samples[J].,2019,(05):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
[6]徐岩,刘林,李中远,等.基于卷积神经网络的玉米品种识别[J].江苏农业学报,2020,(01):18.[doi:doi:10.3969/j.issn.1000-4440.2020.01.003]
XU Yan,LIU Lin,LI Zhong-yuan,et al.Recognition of maize varieties based on convolutional neural network[J].,2020,(05):18.[doi:doi:10.3969/j.issn.1000-4440.2020.01.003]
[7]张善文,邵彧,齐国红,等.基于多尺度注意力卷积网络的作物害虫检测[J].江苏农业学报,2021,(03):579.[doi:doi:10.3969/j.issn.1000-4440.2021.03.005]
ZHANG Shan-wen,SHAO Yu,QI Guo-hong,et al.Crop pest detection based on multi-scale convolutional network with attention[J].,2021,(05):579.[doi:doi:10.3969/j.issn.1000-4440.2021.03.005]
[8]袁红春,王敏,刘慧,等.基于特征交互与卷积网络的渔场预测模型[J].江苏农业学报,2021,(06):1501.[doi:doi:10.3969/j.issn.1000-4440.2021.05.019]
YUAN Hong-chun,WANG Min,LIU Hui,et al.Fishing ground prediction model based on feature interaction and convolutional network[J].,2021,(05):1501.[doi:doi:10.3969/j.issn.1000-4440.2021.05.019]
[9]李婕,李毅,张瑞杰,等.无人机遥感影像在油菜品种识别中的应用[J].江苏农业学报,2022,38(03):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
LI Jie,LI Yi,ZHANG Rui-jie,et al.Application of UAV remote sensing image in rape variety identification[J].,2022,38(05):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
[10]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(05):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]