[1]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853-859.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
 YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(04):853-859.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
点击复制

无人机遥感技术在小尺度土地利用现状动态监测中的应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
853-859
栏目:
耕作栽培·资源环境
出版日期:
2019-08-31

文章信息/Info

Title:
Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations
作者:
于堃单捷王志明卢必慧邱琳毛良君
(江苏省农业科学院农业信息研究所,江苏南京210014)
Author(s):
YU KunSHAN JieWANG ZhimingLU BihuiQIU LinMAO Liangjun
(Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
无人机遥感土地利用现状动态监测
Keywords:
unmanned aerial vehiclesremote sensingland use statusdynamic monitoring
分类号:
P237
DOI:
doi:10.3969/j.issn.1000-4440.2019.04.015
文献标志码:
A
摘要:
土地利用现状的动态监测是管理部门制定土地利用政策的重要依据。无人机(UAVs)遥感技术具有机动灵活、操作简便等特点,在土地利用、农业生产和防灾减灾等诸多领域发挥重要作用。本研究以江苏省农业科学院本部为例,进一步分析空间分辨率、航向和旁向重叠度等参数对小尺度土地利用现状动态监测结果的影响。结果表明,60 cm空间分辨率的无人机遥感数据能够满足小尺度土地利用现状2级分类的需求。同一空间分辨率下,航向和旁向重叠度均为75%的无人机观测数据在图像拼接质量上要优于航向和旁向重叠度为70%和65%的无人机观测数据。2016-2018年研究区范围内4类地物面积减少,9类地物面积增加。其中,蔬菜地面积减少近55%,荒草地和园地面积分别减少约20%和10%,坑塘面积减少约7%;温室大棚面积增加超过70%,特殊试验田和护坡面积增加30%~40%,场地和林地面积增加14%~20%,道路面积增加略大于3%。
Abstract:
Land use status monitoring is a critical component of implementing land use policies. Due to the flexibility of the data acquisition periods, unmanned aerial vehicles (UAVs) as new platforms can overcome the temporal limitations. Therefore, UAVs made great effects on land use monitoring, agricultural production and disaster prevention. In this study, the main campus of Jiangsu academy of agricultural sciences was chosen to compare and evaluate the efficiencies of land use status monitoring in small scale when choosing different flight parameters (e.g., groundresolution and imageoverlap). The results showed that the UAV remote sensing data with 60 cm groundresolution could meet the needs of twolevel classification of smallscale land use status. Under the same groundresolution, imageoverlap at 75% could offer higher quality of UAV data comparing with imageoverlap at 70% and 65%. From 2016 to 2018, four classifications appeared decreasing in area and nine classifications showed increasing in area. The area of vegetable classification decreased by nearly 55%. The grass, garden and pond area decreased by 20%, 10%, 7%, respectively. The area of greenhouse classification increased by more than 70%. The experimental field and revetment area increased by 30%-40%. The square and woodland area increased by 14%-20%, and the road area increased by more than 3%.

参考文献/References:

[1]敖平平. 土地利用现状常态化调查技术体系探索[J]. 国土与自然资源研究,2018(4):10-12.
[2]李军英,张亚亚,胡琨菠.基于航空影像的万亩大坝土地现状调查技术方法探讨[J].北京测绘,2017(6):68-71.
[3]高丽. 基于3S 技术的开发区土地利用现状动态监测体系建设[J]. 测绘与空间地理信息,2018,41(10):191-193.
[4]张增祥,汪潇,温庆可,等. 土地资源遥感应用研究进展[J]. 遥感学报,2016,20(5):1243-1258.
[5]TATEISHI R, HOAN N T, KOBAYASHI T, et al. Production of global land cover dataGLCNMO2008[J]. Journal of Geography and Geology, 2014, 6(3): 99.
[6]LOVELAND T R, REED B C, BROWN J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1303-1330.
[7]刘纪远,张增祥,徐新良,等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J]. 地理学报,2009,64(12):1411-1420.
[8]刘纪远,匡文慧,张增祥,等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报,2014,69(1):3-14.
[9]杨萍,季明川,郝晋珉. 以土地高效利用为核心的现代农业园区设计与实证分析[J]. 农业工程学报,2015,31(9)281-287.
[10]付萧,鲁恒,朱庆,等. 利用无人机影像进行山区土地利用信息动态监测[J]. 山地学报,2016,34(1):121-126.
[11]周晓云,陆朝锋,廖顺华. 无人机航测遥感技术在农村土地承包经营权登记试点中的应用[J]. 测绘与空间地理信息,2014,37(11):163-165.
[12]刘倩,梁志海,范慧芳. 浅谈无人机遥感的发展及其行业应用[J]. 测绘与空间地理信息,2016,39(6):167-169.
[13]韩文霆,郭聪聪,张立元,等. 基于无人机遥感的灌区土地利用与覆被分类方法[J]. 农业机械学报,2016,47(11):270-277.
[14]YU K, QIU L, WANG J, et al. Winter wheat straw return monitoring by UAVs observations at different resolutions[J]. International Journal of Remote Sensing, 2017, 38(8/10): 2260-2272.
[15]毕凯,黄少林. 无人机航测技术在农村土地调查工作底图制作中的应用[J].国土资源遥感,2016,28(2):149-153.
[16]许辉熙,敬小东. 基于无人机遥感和GIS 技术的土地利用快速详查方法研究[J]. 测绘与空间地理信息,2013,36(9):11-14.
[17]CONGALTON R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1): 35-46.

相似文献/References:

[1]田苗,王鹏新.降水温度指数及其在旱涝灾害监测中的应用[J].江苏农业学报,2016,(04):810.[doi:10.3969/j.issn.100-4440.2016.04.016]
 TIAN Miao,WANG Peng-xin.Precipitation-temperature index and its application in drought and flood disasters monitoring[J].,2016,(04):810.[doi:10.3969/j.issn.100-4440.2016.04.016]
[2]顾军,于堃,张腾,等.基于信息技术的财政支农项目监管方法[J].江苏农业学报,2015,(01):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
 GU Jun,YU Kun,ZHANG Teng,et al.Supervision of goverment finance-supported agricultural projects using information technology in Jiangsu province[J].,2015,(04):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
[3]单捷,邱琳,孙玲,等.基于Radarsat-2的水稻种植面积提取[J].江苏农业学报,2017,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
 SHAN Jie,QIU Lin,SUN Ling,et al.Paddy rice planting area extraction based on Radarsat-2 data[J].,2017,(04):561.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
[4]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(04):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[5]孙玲,单捷,卢必慧,等.江苏省水稻主产区水稻种植调减模式遥感监测[J].江苏农业学报,2020,(04):911.[doi:doi:10.3969/j.issn.1000-4440.2020.04.015]
 SUN Ling,SHAN Jie,LU Bi-hui,et al.Remote sensing monitoring of rice plantation reduction model in main rice production areas of Jiangsu province[J].,2020,(04):911.[doi:doi:10.3969/j.issn.1000-4440.2020.04.015]
[6]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(04):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[7]孙玲,邱琳,单捷,等.2011-2019年江苏省水稻主产区规模连片水稻时空动态分析[J].江苏农业学报,2021,(02):355.[doi:doi:10.3969/j.issn.1000-4440.2021.02.011]
 SUN Ling,QIU Lin,SHAN Jie,et al.Analysis on the spatiotemporal dynamics of rice planted in a large scale contiguously in the main production area of Jiangsu province from 2011 to 2019[J].,2021,(04):355.[doi:doi:10.3969/j.issn.1000-4440.2021.02.011]
[8]张先洁,孙国祥,汪小旵,等.基于超像素特征向量的果树冠层分割方法[J].江苏农业学报,2021,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
 ZHANG Xian-jie,SUN Guo-xiang,WANG Xiao-chan,et al.Segmentation method of fruit tree canopy based on super pixel feature vector[J].,2021,(04):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
[9]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
 GUO Song,CHANG Qing-rui,ZHENG Zhi-kang,et al.Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J].,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
[10]卢必慧,邱琳,李卫国,等.基于遥感的作物产量和产量差估算研究进展[J].江苏农业学报,2023,(03):881.[doi:doi:10.3969/j.issn.1000-4440.2023.03.030]
 LU Bi-hui,QIU Lin,LI Wei-guo,et al.Research progress on crop yield and yield gap estimation based on remote sensing[J].,2023,(04):881.[doi:doi:10.3969/j.issn.1000-4440.2023.03.030]
[11]李瑞鑫,张宝林,潘丽杰,等.不同无人机飞行高度下玉米叶片叶绿素相对含量的无人机遥感反演及其指示叶位的识别[J].江苏农业学报,2024,(07):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]
 LI Ruixin,ZHANG Baolin,PAN Lijie,et al.Unmanned aerial vehicle remote sensing inversion of relative chlorophyll content of maize leaves and identification of their indicator leaf at different flight altitudes[J].,2024,(04):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]

备注/Memo

备注/Memo:
收稿日期:2018-12-06 基金项目:江苏省农业自主创新基金项目(CX-18-3044);江苏省农业科学院基金项目(6111651) 作者简介:于堃(1980-),男,辽宁大连人,博士,副研究员,主要从事农业灾害及环境遥感监测研究。(E-mail)yukun@jaas.ac.cn 通讯作者:王志明,(E-mail)wangzm69@126.com
更新日期/Last Update: 2019-08-31