参考文献/References:
[1]JONES J D G,DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[2]BOLLER T,HE S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928): 742.
[3]SANABRIA N M,HUANG J C,DUBERY I A. Self/nonself perception in plants in innate immunity and defense[J]. Self/nonself, 2010, 1(1): 40-54.
[4]QI D,INNES R W. Recent advances in plant NLR structure, function, localization, and signaling[J]. NLRprotein functions in immunity, 2015,4:348.
[5]BERNOUX M,VE T,WILLIAMS S,et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for selfassociation, signaling, and autoregulation[J]. Cell Host Microbe, 2011, 9: 200-211.
[6]MAEKAWA T,CHENG W,SPIRIDON L N,et al. Coiledcoil domaindependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death[J]. Cell Host Microbe, 2011, 9: 187-199.
[7]VAN DER BIEZEN E A,JONES J D G. The NBARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals[J]. Current Biology, 1998, 8(7): 226-228.
[8]FEI Q,ZHANG Y,XIA R,et al. Small RNAs add zing to the ZigZagZig model of plant defenses[J]. Molecular Plantmicrobe Interactions, 2016, 29(3): 165-169.
[9]STOKES T L,KUNKEL B N,RICHARDS E J. Epigenetic variation in Arabidopsis disease resistance[J]. Genes & Development, 2002, 16(2): 171.
[10]HA M,KIM V N. Regulation of microRNA biogenesis[J]. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524.
[11]MA W,CHEN C,LIU Y,et al. Coupling of micro RNAdirected phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA‐mediated gene silencing[J]. New Phytologist, 2018, 217(4): 1535-1550.
[12]ZHANG Y,XIA R,KUANG H,et al. The diversification of plant NBSLRR defense genes directs the evolution of microRNAs that target them[J]. Molecular Biology and Evolution, 2016, 33(10): 2692-2705.
[13]ZHAI J,JEONG D H,DE P E,et al. MicroRNAs as master regulators of the plant NBLRR defense gene family via the production of phased, transacting siRNAs[J]. Genes & Development, 2011, 25(23): 2540-2553.
[14]KHALFALLAH Y,BOUKTILA D,HABACHIHOUIMLI Y,et al. Regulation of NBSLRR genes by microRNAs in wheat: Computational identification of candidate MIR2118 genes and evidence of flexibility[J]. Cereal Research Communications, 2017, 45(1): 1-10.
[15]HE N,ZHANG C,QI X,et al. Draft genome sequence of the mulberry tree Morus notabilis[J]. Nature Communications, 2013, 4: 2445.
[16]HUANG Y,ZOU Q,WANG Z B. Computational identification of miRNA genes and their targets in mulberry[J]. Russian Journal of Plant Physiology, 2014, 61(4): 537-542.
[17]BARANWAL V K,NEGI N,KHURANA P. Genomewide identification and structural, functional and evolutionary analysis of WRKY components of mulberry[J]. Scientific Reports, 2016, 6: 30794.
[18]刘潮,韩利红,宋培兵,等.桑树WRKY转录因子的全基因组鉴定及生物信息学分析[J].南方农业学报,2017,48(9):1691-1699.
[19]GAI Y P,ZHAO H N,ZHAO Y N,et al. MiRNAseqbased profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease[J]. Scientific Reports, 2018, 8(1): 812.
[20]WU P,HAN S,ZHAO W,et al. Genomewide identification of abiotic stressregulated and novel microRNAs in mulberry leaf[J]. Plant Physiology & Biochemistry, 2015, 95: 75-82.
[21]JIA L,ZHANG D,QI X,et al. Identification of the conserved and novel miRNAs in Mulberry by highthroughput sequencing[J]. PLoS ONE, 2014, 9(8): e104409.
[22]KUANG H,WOO S S,MEYERS B C,et al. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce[J]. Plant Cell, 2004, 16(11): 2870-2894.
[23]WHITHAM S,DINESHKUMAR S P,CHOI D,et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin1 receptor[J]. Cell, 1994, 78(6): 1101-1115.
[24]YANG X,WANG J. Genomewide analysis of NBSLRR genes in sorghum genome revealed several events contributing to NBSLRR gene evolution in grass species[J]. Evolutionary Bioinformatics, 2016, 12: 36433.
[25]MACE E,TAI S,INNES D,et al. The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes[J]. BMC Plant Biology, 2014, 14(1): 253.
[26]ASHIKAWA I,HAYASHI N,YAMANE H,et al. Two adjacent nucleotidebinding siteleucinerich repeat class genes are required to confer Pikmspecific rice blast resistance[J]. Genetics, 2008, 180(4): 2267-2276.
[27]NARUSAKA M,SHIRASU K,NOUTOSHI Y,et al. RRS1 and RPS4 provide a dual resistancegene system against fungal and bacterial pathogens[J]. The Plant Journal, 2009, 60(2): 218-226.
[28]ZHANG C,CHEN H,CAI T,et al. Overexpression of a novel peanut NBSLRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco[J]. Plant Biotechnology Journal, 2017, 15(1): 39-55.
[29]LU C,KULKARNI K,SOURET F F,et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNAdependent RNA polymerase2 mutant[J]. Genome Research, 2006, 16(10): 1276-1288.
[30]SHIVAPRASAD P V,CHEN H M,PATEL K,et al. A microRNA superfamily regulates nucleotide binding siteleucinerich repeats and other mRNAs[J]. The Plant Cell, 2012, 24(3): 859-874.
[31]LI F,PIGNATTA D,BENDIX C,et al. MicroRNA regulation of plant innate immune receptors [J]. Proceedings of the National Academy of Sciences, 2012, 109(5): 1790-1795.
相似文献/References:
[1]吉仁慈,朱义勇,柴源,等.模拟SO2 湿沉降对桑树叶片光合日变化和生长的影响[J].江苏农业学报,2016,(06):1396.[doi:doi:10.3969/j.issn.1000-4440.2016.06.031]
JI Ren-ci,ZHU Yi-yong,CHAI Yuan,et al.Diurnal changes of leaf photosynthesis and growth of mulberry in response to simulated SO2 wet deposition[J].,2016,(03):1396.[doi:doi:10.3969/j.issn.1000-4440.2016.06.031]
[2]许楠,倪红伟,钟海秀,等.不同供氮水平对饲料桑树幼苗生长以及光合特性的影响[J].江苏农业学报,2015,(04):865.[doi:10.3969/j.issn.1000-4440.2015.04.024]
XU Nan,NI Hong-wei,ZHONG Hai-xiu,et al.Growth and photosynthetic characteristics of forage mulberry in response to different nitrogen application levels[J].,2015,(03):865.[doi:10.3969/j.issn.1000-4440.2015.04.024]
[3]刘潮,韩利红,宋培兵,等.桑树类甜蛋白家族鉴定与生物信息学分析[J].江苏农业学报,2017,(05):998.[doi:doi:10.3969/j.issn.1000-4440.2017.05.007]
LIU Chao,HAN Li-hong,SONG Pei-bing,et al.Identification and bioinformatics analysis of thaumatin-like protein family in Morus notabilis[J].,2017,(03):998.[doi:doi:10.3969/j.issn.1000-4440.2017.05.007]