[1]刘潮,褚洪龙,韩利红,等.桑树NBSLRR类基因家族的全基因组鉴定及其调控microRNAs分析[J].江苏农业学报,2019,(03):544-553.[doi:doi:10.3969/j.issn.1000-4440.2019.03.007]
 LIU Chao,CHU Hong-long,HAN Li-hong,et al.Genomewide identification of NBSLRR genes and regulation analysis by microRNAs in mulberry[J].,2019,(03):544-553.[doi:doi:10.3969/j.issn.1000-4440.2019.03.007]
点击复制

桑树NBSLRR类基因家族的全基因组鉴定及其调控microRNAs分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
544-553
栏目:
遗传育种·生理生化
出版日期:
2019-06-30

文章信息/Info

Title:
Genomewide identification of NBSLRR genes and regulation analysis by microRNAs in mulberry
作者:
刘潮褚洪龙韩利红杨云锦高永唐利洲
(曲靖师范学院云南高原生物资源保护与利用研究中心/生物资源与食品工程学院/云南省高校云贵高原动植物多样性及生态适应性进化重点实验室,云南 曲靖 655011)
Author(s):
LIU ChaoCHU Hong-longHAN Li-hongYANG Yun-jinGAO YongTANG Li-zhou
(Center for Yunnan Plateau Biological Resources Protection and Utilization/College of Biological Resource and Food Engineering/Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on Yungui Plateau,Qujing Normal University,Qujing 655011, China)
关键词:
桑树NBSLRR生物信息学miRNA
Keywords:
mulberrynucleotidebinding site leucinerich repeat(NBSLRR)bioinformaticsmiRNA
分类号:
S792.99
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.007
文献标志码:
A
摘要:
利用生物信息学方法,全面分析了桑树NBSLRR类基因家族组成、结构、进化、组织表达,并对该家族基因的调控microRNA(miRNA)进行了预测。共筛选到112个桑树NBSLRR类基因,根据功能域主要分为NBS、CCNBS、CCNBSLRR、NBSLRR 4种类型。内含子数和相位分析结果显示,基因结构类型多样。聚类分析结果显示不同聚类组间存在较多的类型交叉现象。该家族基因存在组织表达特异性。大部分桑树NBSLRR类基因均具有被miRNAs调控的可能性,miR472b和miR482b在调控该家族基因表达中可能发挥了主要作用。桑树NBSLRR家族基因结构和进化的复杂性决定了其功能的多样性,miRNA在控制该家族基因表达的适应性成本中发挥作用。
Abstract:
The composition, structure, evolution, tissue expression of the nucleotidebinding site (NBS) leucinerich repeat (LRR) gene family in mulberry, and the relationship between microRNA (miRNA) and the family gene were analyzed by bioinformatics. A total of 112 NBSLRR genes of mulberry were identified, which were divided into four types (NBS, CCNBS, CCNBSLRR and NBSLRR) according to functional domains. The results of intron number and phase analysis showed that the types of genetic structure were various. Cluster analysis results showed that many types gene were mixed. The family genes were specific in tissue expression. Most of the NBSLRR genes in mulberry were potential targets of miRNAs, and miR472b and miR482b played a major role in regulating the gene expression of the family. The complexity of the genetic structure and evolution of the NBSLRR family of mulberry determines the diversity of its function. miRNA may play a role in reducing the adaptive cost of gene expression.

参考文献/References:

[1]JONES J D G,DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[2]BOLLER T,HE S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928): 742.
[3]SANABRIA N M,HUANG J C,DUBERY I A. Self/nonself perception in plants in innate immunity and defense[J]. Self/nonself, 2010, 1(1): 40-54.
[4]QI D,INNES R W. Recent advances in plant NLR structure, function, localization, and signaling[J]. NLRprotein functions in immunity, 2015,4:348.
[5]BERNOUX M,VE T,WILLIAMS S,et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for selfassociation, signaling, and autoregulation[J]. Cell Host Microbe, 2011, 9: 200-211.
[6]MAEKAWA T,CHENG W,SPIRIDON L N,et al. Coiledcoil domaindependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death[J]. Cell Host Microbe, 2011, 9: 187-199.
[7]VAN DER BIEZEN E A,JONES J D G. The NBARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals[J]. Current Biology, 1998, 8(7): 226-228.
[8]FEI Q,ZHANG Y,XIA R,et al. Small RNAs add zing to the ZigZagZig model of plant defenses[J]. Molecular Plantmicrobe Interactions, 2016, 29(3): 165-169.
[9]STOKES T L,KUNKEL B N,RICHARDS E J. Epigenetic variation in Arabidopsis disease resistance[J]. Genes & Development, 2002, 16(2): 171.
[10]HA M,KIM V N. Regulation of microRNA biogenesis[J]. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524.
[11]MA W,CHEN C,LIU Y,et al. Coupling of micro RNAdirected phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA‐mediated gene silencing[J]. New Phytologist, 2018, 217(4): 1535-1550.
[12]ZHANG Y,XIA R,KUANG H,et al. The diversification of plant NBSLRR defense genes directs the evolution of microRNAs that target them[J]. Molecular Biology and Evolution, 2016, 33(10): 2692-2705.
[13]ZHAI J,JEONG D H,DE P E,et al. MicroRNAs as master regulators of the plant NBLRR defense gene family via the production of phased, transacting siRNAs[J]. Genes & Development, 2011, 25(23): 2540-2553.
[14]KHALFALLAH Y,BOUKTILA D,HABACHIHOUIMLI Y,et al. Regulation of NBSLRR genes by microRNAs in wheat: Computational identification of candidate MIR2118 genes and evidence of flexibility[J]. Cereal Research Communications, 2017, 45(1): 1-10.
[15]HE N,ZHANG C,QI X,et al. Draft genome sequence of the mulberry tree Morus notabilis[J]. Nature Communications, 2013, 4: 2445.
[16]HUANG Y,ZOU Q,WANG Z B. Computational identification of miRNA genes and their targets in mulberry[J]. Russian Journal of Plant Physiology, 2014, 61(4): 537-542.
[17]BARANWAL V K,NEGI N,KHURANA P. Genomewide identification and structural, functional and evolutionary analysis of WRKY components of mulberry[J]. Scientific Reports, 2016, 6: 30794.
[18]刘潮,韩利红,宋培兵,等.桑树WRKY转录因子的全基因组鉴定及生物信息学分析[J].南方农业学报,2017,48(9):1691-1699.
[19]GAI Y P,ZHAO H N,ZHAO Y N,et al. MiRNAseqbased profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease[J]. Scientific Reports, 2018, 8(1): 812.
[20]WU P,HAN S,ZHAO W,et al. Genomewide identification of abiotic stressregulated and novel microRNAs in mulberry leaf[J]. Plant Physiology & Biochemistry, 2015, 95: 75-82.
[21]JIA L,ZHANG D,QI X,et al. Identification of the conserved and novel miRNAs in Mulberry by highthroughput sequencing[J]. PLoS ONE, 2014, 9(8): e104409.
[22]KUANG H,WOO S S,MEYERS B C,et al. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce[J]. Plant Cell, 2004, 16(11): 2870-2894.
[23]WHITHAM S,DINESHKUMAR S P,CHOI D,et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin1 receptor[J]. Cell, 1994, 78(6): 1101-1115.
[24]YANG X,WANG J. Genomewide analysis of NBSLRR genes in sorghum genome revealed several events contributing to NBSLRR gene evolution in grass species[J]. Evolutionary Bioinformatics, 2016, 12: 36433.
[25]MACE E,TAI S,INNES D,et al. The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes[J]. BMC Plant Biology, 2014, 14(1): 253.
[26]ASHIKAWA I,HAYASHI N,YAMANE H,et al. Two adjacent nucleotidebinding siteleucinerich repeat class genes are required to confer Pikmspecific rice blast resistance[J]. Genetics, 2008, 180(4): 2267-2276.
[27]NARUSAKA M,SHIRASU K,NOUTOSHI Y,et al. RRS1 and RPS4 provide a dual resistancegene system against fungal and bacterial pathogens[J]. The Plant Journal, 2009, 60(2): 218-226.
[28]ZHANG C,CHEN H,CAI T,et al. Overexpression of a novel peanut NBSLRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco[J]. Plant Biotechnology Journal, 2017, 15(1): 39-55.
[29]LU C,KULKARNI K,SOURET F F,et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNAdependent RNA polymerase2 mutant[J]. Genome Research, 2006, 16(10): 1276-1288.
[30]SHIVAPRASAD P V,CHEN H M,PATEL K,et al. A microRNA superfamily regulates nucleotide binding siteleucinerich repeats and other mRNAs[J]. The Plant Cell, 2012, 24(3): 859-874.
[31]LI F,PIGNATTA D,BENDIX C,et al. MicroRNA regulation of plant innate immune receptors [J]. Proceedings of the National Academy of Sciences, 2012, 109(5): 1790-1795.

相似文献/References:

[1]吉仁慈,朱义勇,柴源,等.模拟SO2 湿沉降对桑树叶片光合日变化和生长的影响[J].江苏农业学报,2016,(06):1396.[doi:doi:10.3969/j.issn.1000-4440.2016.06.031]
 JI Ren-ci,ZHU Yi-yong,CHAI Yuan,et al.Diurnal changes of leaf photosynthesis and growth of mulberry in response to simulated SO2 wet deposition[J].,2016,(03):1396.[doi:doi:10.3969/j.issn.1000-4440.2016.06.031]
[2]许楠,倪红伟,钟海秀,等.不同供氮水平对饲料桑树幼苗生长以及光合特性的影响[J].江苏农业学报,2015,(04):865.[doi:10.3969/j.issn.1000-4440.2015.04.024]
 XU Nan,NI Hong-wei,ZHONG Hai-xiu,et al.Growth and photosynthetic characteristics of forage mulberry in response to different nitrogen application levels[J].,2015,(03):865.[doi:10.3969/j.issn.1000-4440.2015.04.024]
[3]刘潮,韩利红,宋培兵,等.桑树类甜蛋白家族鉴定与生物信息学分析[J].江苏农业学报,2017,(05):998.[doi:doi:10.3969/j.issn.1000-4440.2017.05.007]
 LIU Chao,HAN Li-hong,SONG Pei-bing,et al.Identification and bioinformatics analysis of thaumatin-like protein family in Morus notabilis[J].,2017,(03):998.[doi:doi:10.3969/j.issn.1000-4440.2017.05.007]

备注/Memo

备注/Memo:
收稿日期:2018-07-09 基金项目:国家自然科学基金项目(31460561、31760013、31860005、31860057);云南省地方本科高校基础研究联合专项(2017FH001-034、2017FH001-037);国家级大学生创新创业训练计划项目(201610684004、201710684012) 作者简介:刘潮(1980-),男,河北景县人,博士,副教授,研究研究方向为分子植物病理学。(E-mail)liuchao@mail.qjnu.edu.cn 通讯作者:唐利洲,(E-mail)tanglizhou@163.com
更新日期/Last Update: 2019-06-30