[1]冯磊,石元豹,汪贵斌,等.银杏bHLH家族转录因子生物信息学及表达分析[J].江苏农业学报,2019,(02):400-411.[doi:doi:10.3969/j.issn.1000-4440.2019.02.022]
 FENG Lei,SHI Yuan-bao,WANG Gui-bin,et al.Bioinformatics and expression analysis of transcription factors of ginkgo bHLH family[J].,2019,(02):400-411.[doi:doi:10.3969/j.issn.1000-4440.2019.02.022]
点击复制

银杏bHLH家族转录因子生物信息学及表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
400-411
栏目:
园艺
出版日期:
2019-04-30

文章信息/Info

Title:
Bioinformatics and expression analysis of transcription factors of ginkgo bHLH family
作者:
冯磊12石元豹12汪贵斌12曹福亮12
(1.南京林业大学南方现代林业协同创新中心,江苏南京210037;2.南京林业大学林学院,江苏南京210037)
Author(s):
FENG Lei12SHI Yuan-bao12WANG Gui-bin12CAO Fu-liang12
(1.Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China;2.School of Forestry, Nanjing Forestry University, Nanjing 210037, China)
关键词:
银杏bHLH转录因子进化分析表达分析
Keywords:
Ginkgo bilobabHLH transcription factorsevolution analysisexpression analysis
分类号:
S792.95
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.022
文献标志码:
A
摘要:
以银杏基因组数据为基础,对银杏bHLH转录因子进行筛选和分析,从银杏基因组中鉴定出72条bHLH转录因子。进一步分析发现,不同bHLH转录因子序列长度和分子量差异较大,而理论等电点及亲水性等比较接近;各家族成员均含有N端碱性氨基酸区和C端的螺旋-环-螺旋区;该家族可分为17个亚家族,相同亚家族成员保守基序的类型十分相似。通过启动子分析发现,多数银杏bHLH基因启动子均含有光响应元件、激素响应元件和逆境胁迫响应元件等。表达分析结果显示,有7条银杏bHLH基因的表达具有组织特异性,有6条基因在各组织中表达水平都比较高,预测其在银杏生物学过程中具有十分重要的作用。
Abstract:
Based on the genome data, the bHLH transcription factors (TFs) of ginkgo were screened and analyzed. At last, 72 bHLH TFs were identified from ginkgo genome. Further analysis revealed that the sequence length and molecular weight of different bHLH TFs were significantly different, while the theoretical isoelectric point and hydrophilic point were relatively close. Each bHLH member contained the N-terminal alkaline amino acid region and the C-terminal helix-loop-helix region. According to the evolution analysis results, all bHLH TFs could be divided into 17 subfamilies, and the same subfamily members were similar in the type of conservative motif. The promoter analysis results indicated that most ginkgo bHLH gene promoters contained light response elements, hormone response elements and stress response elements. The expression analysis results demonstrated that seven ginkgo bHLH genes were tissue-specific and six genes were highly expressed in all tissues, which predicted that they played a very important role in the biological process of ginkgo.

参考文献/References:

[1]BUCK M J, ATCHLEY W R. Phylogenetic analysis of plant basic helix-loop-helix proteins [J]. J Mol Evol, 2003, 56(6):742-750.
[2]MURRE C, MCCAW P, BALTIMORE D. A new DNA binding and dimerizing motif in Immunoglobulin enhancer binding, Daugtherless, MyoD, and Myc proteins[J]. Cell, 1989, 56(5):777-783.
[3]王勇江,陈克平,姚勤. bHLH转录因子家族研究进展 [J]. 遗传, 2008,30(7):821-830.
[4]王勇,姚勤,陈克平. 动物bHLH转录因子家族成员及其功能 [J]. 遗传, 2010,34(4):307-330.
[5]刘晓月,王文生,傅彬英. 植物BHLH转录因子家族的功能研究进展 [J]. 生物技术进展, 2011,1(6):391-397.
[6]ATCHLEY W A, FITCH W M. A natural classification of the basic helix-loop-helix class of transcription factors [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10):5172-5176.
[7]TOLEDO O G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family(w) [J]. Plant Cell, 2003,15(8):1749-1770.
[8]BAILEY P C, MARTIN C, TOLEDO O G, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana [J]. The Plant Cell, 2003, 15(11):2497-2501.
[9]LI X, DUAN X, JIANG H, et al. Genome-wide analysis of basic helix-loop-helix transcription factor family in rice and arabidopsis1 [J]. Physiologia Plantarum, 2006,141(4): 1167-1184.
[10]CARRETERO P L, GALSTYAN A, ROIG V I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in arabidopsis, poplar, rice, moss, and algae1 [J]. Physiologia Plantarum, 2010, 153(3):1398-1412.
[11]杨金华. 苹果bHLH转录因子家族的鉴定及表达分析 [D]. 杨凌:西北农林科技大学, 2017.
[12]李晓刚,李慧,杨青松,等. 杜梨bHLH转录因子家族两成员的序列特征及对非生物胁迫的转录响应[J]. 江苏农业科学,2017,45(22):40-45.
[13]李永强,应朱,郭卫东,等. 樱桃bHLH转录因子家族基因鉴定及表达分析[J]. 分子植物育种, 2018(14):1-13.
[14]黄宁,刘朋,霍俊伟,等. 蓝果忍冬果实花青素含量及合成相关基因表达分析[J]. 南方农业学报,2017,48(7):1139-1147.
[15]何洁, 顾秀容, 魏春华, 等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析 [J]. 园艺学报, 2016, 43(2):281-294.
[16]裴苓荃. 甘薯bHLH基因家族的鉴定与初步分析 [D]. 徐州:江苏师范大学, 2017.
[17]SONG X M, HUANG Z N, DUAN W K, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage(Brassica rapa ssp. pekinensis) [J]. Molecular Genetics and Genomics, 2014, 289(1):77-91.
[18]王翠,兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展 [J]. 生命科学研究, 2016, 20(4):358-364.
[19]刘文文,李文学. 植物bHLH转录因子研究进展 [J]. 生物技术进展, 2013,3(1):7-11.
[20]WANG W S, ZHU J, LU Y T. Overexpression of AtbHLH112 suppresses lateral root emergence in Arabidopsis [J]. Functional Plant Biology, 2014, 41(4):342-352.
[21]LIU Y, JI X, NIE X, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs [J]. New Phytologist, 2015, 207(3):692-709.
[22]YUAN Y, WU H, WANG N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis [J]. Cell Res, 2008, 18(3):385-397.
[23]HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis [J]. The EMBO Journal, 2002, 21(10):2441-2450.
[24]WANG Y J, ZHANG Z G, HE X J, et al. A rice transcription factor OsbHLH1 is involved in cold stress response [J]. Theoretical and Applied Genetics, 2003,107(8):1402-1409.
[25]曹福亮. 中国银杏 [M]. 南京:江苏科学技术出版社, 2002: 406.
[26]何昌文,朱丽,沈珊,等. 银杏bHLH91转录因子基因的克隆及表达分析 [J]. 广西植物, 2018, 38(2):202-209.
[27]LIN X, ZHANG J, LI Y, et al. Functional genomics of a living fossil tree, Ginkgo, based on next-generation sequencing technology [J]. Physiol Plant, 2011, 143(3):207-218.
[28]LETUNIC I, DOERKS T, BORK P. SMART: recent updates, new developments and status in 2015 [J]. Nucleic Acids Res, 2015, 43(D1):257-260.
[29]BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs [J]. Nucleic Acids Res, 2006, 34(suppl_2):369-373.
[30]JIN J, TIAN F, YANG D C, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants [J]. Nucleic Acids Res, 2017, 45(D1):1040-1045.
[31]TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28(10):2731-2739.
[32]NIU X, GUAN Y, CHEN S, et al. Genome-wide analysis of basic helix-loop-helix(bHLH) transcription factors in Brachypodium distachyon [J]. BMC Genomics, 2017, 18(1):619.
[33]陈红霖,胡亮亮,王丽侠,等. 绿豆bHLH转录因子家族的鉴定与生物信息学分析 [J]. 植物遗传资源学报, 2017, 18(6): 1159-1167.
[34]陈媞颖,刘娟,袁媛,等. 黄芩bHLH转录因子基因家族生物信息学及表达分析 [J]. 中草药, 2018, 49(3):671-677.
[35]张子佳,王迪,傅彬英. 水稻转录因子bHLH家族基因响应环境胁迫表达谱分析 [J]. 分子植物育种, 2008, 6(3):425-431.
[36]GONZALEZ A, ZHAO M, LEAVITT J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant J, 2008, 53(5):814-827.
[37]XIE Y, TAN H, MA Z, et al. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana [J]. Mol Plant, 2016, 9(5):711-721.
[38]DOMBRECHT B, XUE G P, SPRAGUE S J, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis [J]. Plant Cell, 2007, 19(7):2225-2245.
[39]SCHWEIZER F, FERNANDEZ-CALVO P, ZANDER M, et al. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior [J]. Plant Cell, 2013, 25(8):3117-3132.
[40]GOOSSENS J, MERTENS J, GOOSSENS A. Role and functioning of bHLH transcription factors in jasmonate signalling [J]. J Exp Bot, 2017, 68(6):1333-1347.
[41]PATRA B, PATTANAIK S, SCHLUTTENHOFER C, et al. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. New Phytol, 2018, 217(4):1566-1581.
[42]Arce A L, Cabello J V, Chan R L. Patents on plant transcription factors [J]. Recent Pat Biotechnol, 2008, 2(3):209-217.

相似文献/References:

[1]孙希云,刘春菊,任晗慈,等.冷冻干燥联合膨化干燥工艺优化提高银杏脆粒酥脆质地[J].江苏农业学报,2021,(06):1565.[doi:doi:10.3969/j.issn.1000-4440.2021.05.026]
 SUN Xi-yun,LIU Chun-ju,REN Han-ci,et al.Optimization of freeze drying combined with puffing drying process to improve crispy texture of ginkgo crisp granule[J].,2021,(02):1565.[doi:doi:10.3969/j.issn.1000-4440.2021.05.026]

备注/Memo

备注/Memo:
收稿日期:2018-06-29 基金项目:林业公益性行业科研专项重大项目(201504105) 作者简介:冯磊(1993-),女,江苏南京人,硕士研究生,主要从事经济林栽培研究。(E-mail)2334734213@qq.com 通讯作者:汪贵斌,(E-mail)gbwang@njfu.com.cn
更新日期/Last Update: 2019-05-05