参考文献/References:
[1]BUCK M J, ATCHLEY W R. Phylogenetic analysis of plant basic helix-loop-helix proteins [J]. J Mol Evol, 2003, 56(6):742-750.
[2]MURRE C, MCCAW P, BALTIMORE D. A new DNA binding and dimerizing motif in Immunoglobulin enhancer binding, Daugtherless, MyoD, and Myc proteins[J]. Cell, 1989, 56(5):777-783.
[3]王勇江,陈克平,姚勤. bHLH转录因子家族研究进展 [J]. 遗传, 2008,30(7):821-830.
[4]王勇,姚勤,陈克平. 动物bHLH转录因子家族成员及其功能 [J]. 遗传, 2010,34(4):307-330.
[5]刘晓月,王文生,傅彬英. 植物BHLH转录因子家族的功能研究进展 [J]. 生物技术进展, 2011,1(6):391-397.
[6]ATCHLEY W A, FITCH W M. A natural classification of the basic helix-loop-helix class of transcription factors [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10):5172-5176.
[7]TOLEDO O G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family(w) [J]. Plant Cell, 2003,15(8):1749-1770.
[8]BAILEY P C, MARTIN C, TOLEDO O G, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana [J]. The Plant Cell, 2003, 15(11):2497-2501.
[9]LI X, DUAN X, JIANG H, et al. Genome-wide analysis of basic helix-loop-helix transcription factor family in rice and arabidopsis1 [J]. Physiologia Plantarum, 2006,141(4): 1167-1184.
[10]CARRETERO P L, GALSTYAN A, ROIG V I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in arabidopsis, poplar, rice, moss, and algae1 [J]. Physiologia Plantarum, 2010, 153(3):1398-1412.
[11]杨金华. 苹果bHLH转录因子家族的鉴定及表达分析 [D]. 杨凌:西北农林科技大学, 2017.
[12]李晓刚,李慧,杨青松,等. 杜梨bHLH转录因子家族两成员的序列特征及对非生物胁迫的转录响应[J]. 江苏农业科学,2017,45(22):40-45.
[13]李永强,应朱,郭卫东,等. 樱桃bHLH转录因子家族基因鉴定及表达分析[J]. 分子植物育种, 2018(14):1-13.
[14]黄宁,刘朋,霍俊伟,等. 蓝果忍冬果实花青素含量及合成相关基因表达分析[J]. 南方农业学报,2017,48(7):1139-1147.
[15]何洁, 顾秀容, 魏春华, 等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析 [J]. 园艺学报, 2016, 43(2):281-294.
[16]裴苓荃. 甘薯bHLH基因家族的鉴定与初步分析 [D]. 徐州:江苏师范大学, 2017.
[17]SONG X M, HUANG Z N, DUAN W K, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage(Brassica rapa ssp. pekinensis) [J]. Molecular Genetics and Genomics, 2014, 289(1):77-91.
[18]王翠,兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展 [J]. 生命科学研究, 2016, 20(4):358-364.
[19]刘文文,李文学. 植物bHLH转录因子研究进展 [J]. 生物技术进展, 2013,3(1):7-11.
[20]WANG W S, ZHU J, LU Y T. Overexpression of AtbHLH112 suppresses lateral root emergence in Arabidopsis [J]. Functional Plant Biology, 2014, 41(4):342-352.
[21]LIU Y, JI X, NIE X, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs [J]. New Phytologist, 2015, 207(3):692-709.
[22]YUAN Y, WU H, WANG N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis [J]. Cell Res, 2008, 18(3):385-397.
[23]HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis [J]. The EMBO Journal, 2002, 21(10):2441-2450.
[24]WANG Y J, ZHANG Z G, HE X J, et al. A rice transcription factor OsbHLH1 is involved in cold stress response [J]. Theoretical and Applied Genetics, 2003,107(8):1402-1409.
[25]曹福亮. 中国银杏 [M]. 南京:江苏科学技术出版社, 2002: 406.
[26]何昌文,朱丽,沈珊,等. 银杏bHLH91转录因子基因的克隆及表达分析 [J]. 广西植物, 2018, 38(2):202-209.
[27]LIN X, ZHANG J, LI Y, et al. Functional genomics of a living fossil tree, Ginkgo, based on next-generation sequencing technology [J]. Physiol Plant, 2011, 143(3):207-218.
[28]LETUNIC I, DOERKS T, BORK P. SMART: recent updates, new developments and status in 2015 [J]. Nucleic Acids Res, 2015, 43(D1):257-260.
[29]BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs [J]. Nucleic Acids Res, 2006, 34(suppl_2):369-373.
[30]JIN J, TIAN F, YANG D C, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants [J]. Nucleic Acids Res, 2017, 45(D1):1040-1045.
[31]TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28(10):2731-2739.
[32]NIU X, GUAN Y, CHEN S, et al. Genome-wide analysis of basic helix-loop-helix(bHLH) transcription factors in Brachypodium distachyon [J]. BMC Genomics, 2017, 18(1):619.
[33]陈红霖,胡亮亮,王丽侠,等. 绿豆bHLH转录因子家族的鉴定与生物信息学分析 [J]. 植物遗传资源学报, 2017, 18(6): 1159-1167.
[34]陈媞颖,刘娟,袁媛,等. 黄芩bHLH转录因子基因家族生物信息学及表达分析 [J]. 中草药, 2018, 49(3):671-677.
[35]张子佳,王迪,傅彬英. 水稻转录因子bHLH家族基因响应环境胁迫表达谱分析 [J]. 分子植物育种, 2008, 6(3):425-431.
[36]GONZALEZ A, ZHAO M, LEAVITT J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant J, 2008, 53(5):814-827.
[37]XIE Y, TAN H, MA Z, et al. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana [J]. Mol Plant, 2016, 9(5):711-721.
[38]DOMBRECHT B, XUE G P, SPRAGUE S J, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis [J]. Plant Cell, 2007, 19(7):2225-2245.
[39]SCHWEIZER F, FERNANDEZ-CALVO P, ZANDER M, et al. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior [J]. Plant Cell, 2013, 25(8):3117-3132.
[40]GOOSSENS J, MERTENS J, GOOSSENS A. Role and functioning of bHLH transcription factors in jasmonate signalling [J]. J Exp Bot, 2017, 68(6):1333-1347.
[41]PATRA B, PATTANAIK S, SCHLUTTENHOFER C, et al. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. New Phytol, 2018, 217(4):1566-1581.
[42]Arce A L, Cabello J V, Chan R L. Patents on plant transcription factors [J]. Recent Pat Biotechnol, 2008, 2(3):209-217.