[1]周庆,王岩,宋伟,等.凤眼莲净化藻华养殖尾水过程中的潜在病原菌风险[J].江苏农业学报,2019,(02):340-345.[doi:doi:10.3969/j.issn.1000-4440.2019.02.014]
 ZHOU Qing,WANG Yan,SONG Wei,et al.Potential pathogen risk in cyanobacteria-blooming aquaculture wastewater after remediated by water hyacinth[J].,2019,(02):340-345.[doi:doi:10.3969/j.issn.1000-4440.2019.02.014]
点击复制

凤眼莲净化藻华养殖尾水过程中的潜在病原菌风险()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
340-345
栏目:
耕作栽培·资源环境
出版日期:
2019-04-30

文章信息/Info

Title:
Potential pathogen risk in cyanobacteria-blooming aquaculture wastewater after remediated by water hyacinth
作者:
周庆王岩宋伟陈婷韩士群
(江苏省农业科学院农业资源与环境研究所,江苏南京210014)
Author(s):
ZHOU QingWANG YanSONG WeiCHEN TingHAN Shi-qun
(Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
养殖废水藻华漂浮湿地凤眼莲潜在病原菌
Keywords:
aquaculture wastewatercyanobacteria bloomingfloating wetlandwater hyacinthpotential pathogen
分类号:
X592
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.014
文献标志码:
A
摘要:
通过高通量测序的方法,研究了漂浮植物在净化藻华养殖废水过程中对潜在病原菌和致病相关基因的影响。结果表明,漂浮植物凤眼莲能够显著降低藻华养殖废水中潜在病原菌的总体水平,但是其中的弓形菌属、螺杆菌属、肠杆菌属细菌水平在凤眼莲处理的 12~18 d内出现短暂增长,而密螺旋体属和假单胞菌属细菌水平在凤眼莲处理的30 d时分别攀升至同期藻华养殖废水对照的 (6.2±3.5)倍和 (44.6±20.9)倍。漂浮植物凤眼莲处理后,藻华养殖废水中与人类代谢、传染和免疫疾病相关的基因水平逐渐低于对照,但是与人类神经疾病相关的基因水平与同期对照相比却提升了36.77%±6.91%。可见,仅靠漂浮植物净化处理不能完全消除养殖废水排放病原菌的风险。
Abstract:
The effects of floating plants on the potential pathogens and pathogenic genes in the phytoremediation of cyanobacteria-blooming aquaculture wastewater were studied by the method of high throughput sequencing. The results showed that water hyacinth could significantly reduce the overall level of potential pathogens in the aquaculture wastewater, but the levels of potential pathogenic genus such as Arcobacter, Helicobacter, Enterobacter, were increased briefly during 12-18 days of treatment. Moreover, the levels of potential pathogenic genus such as Treponema and Pseudomonas in treatment of the water hyacinth rose to 6.2±3.5 times and 44.6±20.9 times of control respectively at day 30. During the process of phytoremediation, the level of genes related to human metabolic, infectious and immune system diseases in wastewater was gradually lower than that in the control, but the level of genes related to human neural diseases was increased by 36.77%±6.91% compared with that in the control at day 30. It can be been that the method of floating plants remediation can not completely eliminate the risk of pathogens in aquaculture water.

参考文献/References:

[1]益清. 我国水产养殖每年排放近三亿立方米废水[J]. 现代物业(上旬刊), 2014(z1): 93.
[2]董文斌,何铁光,蒙炎成,等. 狐尾藻对养殖废水的减控去污效果[J]. 南方农业学报,2017,48(7):1204-1210.
[3]窦寅. 两种水生植物在克氏原螯虾养殖中的应用研究[D]. 南京: 南京大学,2011:16-38.
[4]唐红琴,董文斌,李忠义,等. 稻草-狐尾藻治理养殖废水效应研究[J]. 江苏农业科学,2018,46(19):302-305.
[5]张迪,凌去非,刘炜,等. 水葫芦和金鱼藻对黄颡鱼养殖水体净化效果研究[J]. 扬州大学学报,2012, 33(4): 66-71.
[6]刘国锋,何俊,华伯仙,等. 控养速生植物治理污染水体的研究进展[J]. 江苏农业科学,2017,45(21):1-6.
[7]黄子贤. 沉水植物对陆域水产养殖污染削减效应研究[D]. 上海: 上海海洋大学,2011.
[8]闻学政,宋伟,张迎颖,等. 凤眼莲深度净化污水处理厂尾水的效果[J]. 江苏农业学报, 2018,34(5):1072-1080.
[9]龚龙,韩士群,周庆. 水生植物对螃蟹养殖水体原位修复及其强化净化效果[J]. 江苏农业学报, 2015, 31(2): 342-349.
[10]李阳,成家杨,钟钰,等. 浮萍多样性对富营养化水体净化效果的影响[J]. 南方农业学报, 2017,48(2):259-265.
[11]MALIK A. Environmental challenge vis a vis opportunity: The case of water hyacinth[J]. Environment International, 2007, 33(1):122-138.
[12]王璐,李冰,孙盛明,等. 复合养殖系统中浮游植物群落结构及其与水环境因子的关系[J]. 水生态学杂志, 2015, 36(5): 81-88.
[13]DE-OLIVEIRA L F, MARGIS R. The source of the river as a nursery for microbial diversity [J]. PLoS ONE, 2015, 10(3): e120608.
[14]SUN Z, LI G, WANG C, et al. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir [J]. Scientific Reports, 2014, 4: 6966.
[15]WILHELM S W, FARNSLEY S E, LECLEIR G R, et al. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China [J]. Harmful Alage, 2011, 10(2): 207-215.
[16]CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336.
[17]BIBBY K, VIAU E, PECCIA J. Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids [J]. Water Research, 2010, 44 (14): 4252-4260.
[18]YE L, ZHANG T. Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing [J]. Environmental Science & Technology, 2011, 45(17): 7173-7179.
[19]CHORUS I, BARTRAM J. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management [M]. London: E&FN Spon, 1999:55-64.
[20]LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences [J]. Nature Biotechnology, 2013, 31(9):814-821.
[21]BLUMENTHAL U J, MARA D D, PEASEY A, et al. Guidelines for the microbiological quality of treated wastewater used in agriculture: Recommendations for revising WHO guidelines [J]. Bulletin of the World Health Organization, 2000, 78 (9): 1104-1116.
[22]STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs [J]. Environmental Health, 2008, 7 (Suppl 2): 3.
[23]EL-DEEB B, GHERBAWY Y, HASSAN S. Molecular charaterization of endophytic bacteria from metal hyperaccumulator aquatic plant (Eichhornia crassipes) and its role in heavy metal removal [J]. Geomicrobiology Journal, 2012, 29(10): 906-915.
[24]OLIVER J D. Recent findings on the viable but nonculturable state in pathogenic bacteria [J]. FEMS Microbiology Reviews, 2010, 34(4):415-425.
[25]WINGENDER J, FLEMMING H C. Biofilms in drinking water and their role as reservoir for pathogens[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6): 417-423.
[26]侯丽媛,胡安谊,马英,等. 九龙江流域潜在病原菌污染分析[J]. 环境科学, 2014,35(5): 1742-1748.
[27]RAMIREZ E, ROBLES E, MARTINCZ B. Free-living amoebae isolated from water-hyacinth root (Eichhornia crassipes) [J]. Experimental Parasitology, 2010, 126(1):42-44.
[28]YONG Y C, WU X Y, SUN J Z, et al. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review [J]. Chemosphere, 2015, 140: 18-25.
[29]陈丽萍,侯付景,张迪骏,等. 宁波沿海陆源排污口假单胞菌属(Pseudomonas)分布特点[J]. 海洋与湖沼, 2013, 44(4): 926-930.
[30]ORTA DE VELSQUEZ M T, ROJAS-VALENCIA M N, AYALA A. Wastewater disinfection using ozone to remove free-living, highly pathogenic bacteria and amoebae [J]. Ozone Science & Engineering, 2008, 30(5):367-375.
[31]SOTIRIOU G A, PRATSINIS S E. Antibacterial activity of nanosilver ions and particles [J]. Environmental Science & Technology, 2010, 44(14): 5649-5654.
[32]BOMO A M, HUSBY A, STEIK T K. Removal of fish pathogenic bacteria in biological sand filters [J]. Water Research, 2003, 37(11):2618-2626.

相似文献/References:

[1]汤贝贝,张振华,卢信,等.养殖废水中抗生素的植物修复研究进展[J].江苏农业学报,2017,(01):224.[doi:10.3969/j.issn.1000-4440.2017.01.036]
 TANG Bei-bei,ZHANG Zhen-hua,LU Xin,et al.Advances in Phytoremediation of antibiotics in breeding wastewater[J].,2017,(02):224.[doi:10.3969/j.issn.1000-4440.2017.01.036]

备注/Memo

备注/Memo:
收稿日期:2018-07-10 基金项目:国家自然科学基金项目(31800426);江苏省自然科学基金项目(BK20181249);江苏省自主创新项目[CX(18)2027] 作者简介:周庆(1980-),女,江苏南京人,博士,副研究员,主要从事富营养化水体生物修复与藻类资源化利用的研究。(E-mail)qqzhouqing@hotmail.com 通讯作者:韩士群,(E-mail)shqunh@126.com
更新日期/Last Update: 2019-05-05