[1]任伟,赵蓉,刘云根,等.湿地生境下土壤砷形态转化与微环境因子的关系[J].江苏农业学报,2019,(02):321-328.[doi:doi:10.3969/j.issn.1000-4440.2019.02.012]
 REN Wei,ZHAO Rong,LIU Yun-gen,et al.The relationship between soil arsenic speciation transformation and microenvironment factors in wetland habitats[J].,2019,(02):321-328.[doi:doi:10.3969/j.issn.1000-4440.2019.02.012]
点击复制

湿地生境下土壤砷形态转化与微环境因子的关系()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
321-328
栏目:
耕作栽培·资源环境
出版日期:
2019-04-30

文章信息/Info

Title:
The relationship between soil arsenic speciation transformation and microenvironment factors in wetland habitats
作者:
任伟1赵蓉1刘云根12杨桂英12赵立君1张慧娟1李梦莹1王妍1
(1.西南林业大学生态与水土保持学院,云南昆明650224;2.西南林业大学水科学与工程中心,云南昆明650224)
Author(s):
REN Wei1ZHAO Rong1LIU Yun-gen12YANG Gui-ying12ZHAO Li-jun1ZHANG Hui-juan1LI Meng-ying1WANG Yan1
(1.College of Ecology and Soil & Water Conservation, Southwest Forestry University, Kunming 650224, China;2.Research Center of Water Science and Engineering, Southwest Forestry University, Kunming 650224, China)
关键词:
微环境因子结合态环境风险
Keywords:
arsenicmicroenvironment factorbinding stateenvironmental risk
分类号:
X53
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.012
文献标志码:
A
摘要:
通过持续淹水种植典型挺水植物香蒲(Typha angustifolia L.)的模拟湿地生境盆栽试验,探究外源砷(As)污染土壤在不同时间内微环境因子[溶解氧含量(DO)、氧化还原电位(Eh)、电导率(EC)和pH值]的变化规律及砷形态转化的过程和影响因素,并评估对应的环境风险。结果表明,土壤微环境因子对不同处理时间的响应存在差异,随着试验时间延长土壤DO值、Eh值均表现出先降低后升高的趋势;土壤酸碱度趋于中性,且不同处理间没有显著差异;土壤电导率逐渐上升。随着淹水时间的延长,非专性吸附态As(F1)及残渣态As(F5)含量均不断减少,晶型铁铝氧化物结合态As(F4)不断增加,由生物有效态向非生物有效态转化,基本趋于稳定。土壤微环境因子对土壤As结合态的影响是多方向的,同一微环境因子对不同结合态具有不同相关性,且存在较大差异,Eh、DO及pH均对土壤中As的转化具有重要贡献。随着试验时间加长,土壤中As的环境风险表现出先大幅降低后小幅增加的趋势,中后期总体处于中低环境风险状态。
Abstract:
A pot experiment was conducted to study the variation of micro-environmental factors (dissolved oxygen content, oxidation reduction potential, conductivity and pH) and the process and influencing factors of arsenic speciation transformation in soil with different treatments of exogenous arsenic at different time by typical wetland plant Typha angustifolia L. in simulated wetland habitat. The changes and transformation of arsenic species and influencing factors was explored, and assessment of the corresponding environmental risks was conducted. The results showed that the response of soil micro-environment factor to different treatment time was different. The soil dissolved oxygen content(DO) value and oxidation reduction potential(Eh) value decreased first and then increased with the extension of test time. The soil pH tended to be neutral, and there was no significant difference between different treatments. The soil conductivity increased gradually. With the prolongation of waterlogging time, the contents of non-specific adsorption state As (F1) and the residue state As (F5) were decreased continuously, and the crystal form of iron-aluminum oxide bound state As (F4) was increased, and the transformation from biologically effective state to non-biologically effective state was basically stable. Soil microenvironment factors affected the distribution of soil As binding states in multiple directions. The same microenvironment factors had different correlations with different binding states, and there were great differences. Eh, DO and pH all had important contributions to the conversion of As in soil. With the increase of test time, the environmental risk of As in the soil showed a trend of decreasing sharply at first and then increasing slightly, and it was in the middle and low environmental risk state from the middle to the end of the experiment.

参考文献/References:

[1]HE J, CHARLET L. A review of arsenic presence in China drinking water[J]. Journal of Hydrology, 2013, 492(10):79-88.
[2]FENDORF S, MICHAEL H A, GEEN A V. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982):1123-1127.
[3]史晓凯,马茹茹,颜道浩,等.外源砷胁迫对土壤细菌群落结构的影响[J].江苏农业科学,2018,46(14) :242-246,252.
[4]黄维恒,包立,林健,等. 沘江流域耕地土壤重金属分布及生态风险评价[J]. 农业资源与环境学报, 2017, 34(5):456-465.
[5]吴万富,徐艳,史德强,等. 我国河流湖泊砷污染现状及除砷技术研究进展[J]. 环境科学与技术, 2015(s1):190-197.
[6]RESONGLES E, CASIOT C, FREYDIER R, et al. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River,Southern France[J]. Science of the Total Environment, 2014, 481: 509-521.
[7]李彦静.大冶湖底泥养分、重金属和砷、汞含量及空间分布特征研究[D].武汉:湖北大学,2016.
[8]王启栋,宋金明,李学刚. 黄河口湿地有机碳来源及其对碳埋藏提升策略的启示[J]. 生态学报, 2015, 35(2):568-576.
[9]李梦莹,郑毅,刘云根,等. 阳宗海湖滨湿地沉积物砷和有机质对磷赋存形态的影响[J]. 农业环境科学学报, 2016, 35(11):2171-2179.
[10]LI X, XUE Z, GAO J. Environmental influence on vegetation properties of frigid wetlandson the Qinghai-Tibet Plateau, Western China[J]. Wetlands, 2016, 36(5):807-819.
[11]董磊,徐力刚,许加星, 等. 鄱阳湖典型洲滩湿地土壤环境因子对植被分布影响研究[J].土壤学报, 2014, 51(3): 618-626.
[12]SHAO X, LIANG X, WU M, et al. Influences of sediment properties and macrophytes on phosphorous speciation in the intertidal marsh[J]. Environmental Science and Pollution Research,2014, 21(17):10432-10441.
[13]刘文菊,赵方杰. 植物砷吸收与代谢的研究进展[J]. 环境化学, 2011,16(30):56-62.
[14]李思妍,史高玲,娄来清,等. P、Fe及水分对土壤砷有效性和小麦砷吸收的影响[J]. 农业环境科学学报, 2018,37 (3):415-422.
[15]钟松雄,尹光彩,陈志良,等. Eh、pH和铁对水稻土砷释放的影响机制[J]. 环境科学, 2017, 38(6):2530-2537.
[16]杨芬,朱晓东,韦朝阳. 陆地水环境中砷的迁移转化[J]. 生态学杂志, 2015, 34(5):1448-1455.
[17]刘群群,孟范平,王菲菲,等. 东营市北部海域沉积物中重金属的分布、来源及生态风险评价[J]. 环境科学, 2017, 38(9):3635-3644.
[18]刘雪. 抗砷细菌及根系有机酸对砷超富集植物蜈蚣草促生及吸砷机理研究[D]. 南京:南京大学, 2017.
[19]钟松雄,何宏飞,陈志良,等. 水淹条件下水稻土中砷的生物化学行为研究进展[J]. 土壤学报, 2018, 55(1):1-17.
[20]钟松雄,尹光彩,黄润林,等. 利用invitro方法研究不同铁矿对土壤砷生物可给性的影响[J]. 环境科学, 2017, 38(3):1201-1208.
[21]国家生态环境部.土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S].北京:中国环境科学出版社,2018.
[22]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
[23]WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2):309-323.
[24]孔明,董增林,晁建颖,等. 巢湖表层沉积物重金属生物有效性与生态风险评价[J]. 中国环境科学, 2015, 35(4):1223-1229.
[25]ABIKO T, OBARA M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots.[J]. Plant Science An International Journal of Experimental Plant Biology, 2014, 215/216(2):76.
[26]杨旭健,傅友强,沈宏,等. 水稻根表铁膜及其形成的形态、生理及分子机理综述[J]. 生态学杂志, 2014, 33(8):2235-2244.
[27]王旭刚,孙丽蓉,马林娟,等. 黄河中下游湿地土壤铁还原氧化过程的温度敏感性[J]. 土壤学报, 2018, 55(2):380-389.
[28]苏世鸣,曾希柏,白玲玉,等. 微生物对砷的作用机理及利用真菌修复砷污染土壤的可行性[J]. 应用生态学报, 2010, 21(12):3266-3272.
[29]WANG Z, HOU L, LIU Y, et al. Metal contamination in a riparian wetland: distribution, fractionation and plant uptake[J]. Chemosphere, 2018, 200:587.
[30]杨文弢,王英杰,周航,等. 水稻不同生育期根际及非根际土壤砷形态迁移转化规律[J]. 环境科学, 2015(2):694-699.
[31]雷鸣,曾敏,廖柏寒,等. 含磷物质对水稻吸收土壤砷的影响[J]. 环境科学, 2014(8):3149-3154.
[32]HONMA T, OHBA H, KANEKOKADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8):4178.
[33]卜贵军,于静,邸慧慧,等. 鸡粪堆肥有机物演化对重金属生物有效性影响研究[J]. 环境科学,2014,35(11):4352-4358.
[34]GUO H, REN Y, LIU Q, et al. Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: Mechanism and application[J]. Environmental Science & Technology, 2013, 47(2):1009-1016.
[35]王亚男. 外源砷在土壤中的老化及其对土壤微生物影响的机理研究[D]. 北京:中国农业大学, 2016.
[36]杨明,许丽英,宋雨,等. 厌氧微生物作用下土壤中砷的形态转化及其分配[J]. 生态毒理学报, 2013, 8(2):178-185.
[37]郭伟,林咸永,程旺大. 不同地区土壤中分蘖期水稻根表铁氧化物的形成及其对砷吸收的影响[J]. 环境科学, 2010, 31(2):496-502.
[38]孙瑞波,盛下放,李娅,等. 南京栖霞重金属污染区植物富集重金属效应及其根际微生物特性分析[J]. 土壤学报, 2011, 48(5):1013-1020.
[39]许仙菊,张永春,沈睿,等. 水稻不同生育期土壤砷形态分布特征及其生物有效性研究[J]. 生态环境学报, 2010, 19(8):1983-1987.
[40]张慧娟,刘云根,侯磊,等. 典型出境河流生态修复区沉积物重金属污染特征及生态风险评估[J]. 环境科学研究, 2017, 30(9):1415-1424.

相似文献/References:

[1]凌云,万夕和,张朝晖,等.微波加湿法分段消解-原子荧光法测定贝藻产品中总砷含量[J].江苏农业学报,2017,(03):695.[doi:doi:10.3969/j.issn.1000-4440.2017.03.031]
 LING Yun,WAN Xi-he,ZHANG Zhao-hui,et al.Determination of total arsenic content in shellfish and algae products by microwave and wet digestion-hydride generation atomic fluorescence spectrometry[J].,2017,(02):695.[doi:doi:10.3969/j.issn.1000-4440.2017.03.031]
[2]练旺民,徐薇,孟卓玲,等.表油菜素内酯在缓解水稻砷毒害中的作用[J].江苏农业学报,2018,(06):1267.[doi:doi:10.3969/j.issn.1000-4440.2018.06.010]
 LIAN Wang-min,XU Wei,MENG Zhuo-ling,et al.Effects of supplementation of epibrassinolide on alleviation of arsenic stress in rice[J].,2018,(02):1267.[doi:doi:10.3969/j.issn.1000-4440.2018.06.010]
[3]史高玲,周东美,余向阳,等.水稻和小麦累积镉和砷的机制与阻控对策[J].江苏农业学报,2021,(05):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
 SHI Gao-ling,ZHOU Dong-mei,YU Xiang-yang,et al.Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J].,2021,(02):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]

备注/Memo

备注/Memo:
收稿日期:2018-10-08 基金项目:国家自然科学基金项目(41761098、21767027、31560147);云南省教育厅科学研究基金项目(2018Y121) 作者简介:任伟(1992-),男,硕士研究生,主要研究方向湿地生态修复。(E-mail)renweiswfc2017@163.com 通讯作者:王妍,(E-mail)wycaf@126.com
更新日期/Last Update: 2019-05-05