参考文献/References:
[1]SHABALA S, CUIN T A. Potassium transport and plant salt tolerance[J]. Physiol Plant, 2008, 133(4):651-669.
[2]NAN G, ZHANG Y, LI S, et al. NaCl stress-induced transcriptomics analysis of Salix linearistipularis (Salix mongolica) [J]. J Biol Res (Thessalon), 2016,23: 1.
[3]CHINNUSAMY V, ZHU J, ZHU J K. Salt stress signaling and mechanisms of plant salt tolerance[J]. Genet Eng, 2006, 27: 141-177.
[4]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
[5]CHEN S, POLLE A. Salinity tolerance of Populus[J]. Plant Biol (Stuttg), 2010,12(2): 317-333.
[6]NISHIYAMA R, LE D T, WATANABE Y, et al. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency[J]. PLoS ONE, 2012,7(2):e32124.
[7]WARD J M, HIRSCHI K D, SZE H. Plants pass the salt[J]. Trends Plant Sci, 2003, 8(5): 200-201.
[8]NISHIYAMA R, WATANABE Y, FUJITA Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. Plant Cell, 2011,23(6):2169-2183.
[9]KRASENSKY J, JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4): 1593-1608.
[10]SANCHEZ-BARRENA M J, MARTINEZ-RIPOLL M, ZHU J K, et al. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response[J]. J Mol Biol, 2005, 345(5): 1253-1264.
[11]NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends Plant Sci, 2005,10(7): 339-346.
[12]XU P, LIU Z, FAN X, et al. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress[J]. Gene, 2013, 525(1): 26-34.
[13]BUYUK I, INAL B, ILHAN E, et al. Genome-wide identification of salinity responsive HSP70s in common bean[J]. Mol Biol Rep, 2016, 43(11): 1251-1266.
[14]TSUKAGOSHI H, SUZUKI T, NISHIKAWA K, et al. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity[J]. PLoS ONE, 2015, 10(2): e0118339.
[15]BUSHMAN B S, AMUNDSEN K L, WARNKE S E, et al. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress[J]. BMC Genomics, 2016, 17: 48.
[16]LONG W, ZOU X, ZHANG X. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage[J]. PLoS ONE, 2015,10(2): e0116217.
[17]ZHANG J, JIANG D, LIU B, et al. Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress[J]. Plant Cell Rep, 2014,33(9): 1565-1579.
[18]GOYAL E, AMIT S K, SINGH R S, et al. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local[J]. Sci Rep, 2016, 6: 27752.
[19]KUMARI S, SABHARWAL V P, KUSHWAHA H R, et al. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.[J]. Funct Integr Genomics, 2009, 9(1): 109-123.
[20]OHTSU K, SMITH M B, EMRICH S J, et al. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.) [J]. Plant J, 2007, 52(3): 391-404.
[21]WEBER A P, WEBER K L, CARR K, et al. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing[J]. Plant Physiol, 2007, 144(1): 32-42.
[22]李敏,王莹,李玉娟,等. 2个柳树亲本耐盐性比较试验[J]. 浙江农业科学, 2017(7):1220-1222.
[23]WICKER T, SCHLAGENHAUF E, GRANER A, et al. 454 sequencing put to the test using the complex genome of barley[J]. BMC Genomics, 2006, 7: 275.
[24]MOROZOVA O, HIRST M, MARRA M A. Applications of new sequencing technologies for transcriptome analysis[J]. Annu Rev Genomics Hum Genet, 2009,10: 135-151.
相似文献/References:
[1]张进兵,沈春修,王舸泓,等.东乡野生稻苗期耐冷QTL qCTS11.2位点候选基因LOC_Os11g35390-DX的克隆、生物信息学分析及遗传转化[J].江苏农业学报,2020,(06):1612.[doi:doi:10.3969/j.issn.1000-4440.2020.06.035]
ZHANG Jin-bing,SHEN Chun-xiu,WANG Ge-hong,et al.Cloning, bioinformatic analysis and genetic transformation of candidate gene LOC_Os11g35390-DX at QTL qCTS11.2 in Dongxiang wild rice[J].,2020,(02):1612.[doi:doi:10.3969/j.issn.1000-4440.2020.06.035]
[2]叶卫军,吴泽江,田东丰,等.绿豆窄叶突变体vrnl9基因的精细定位与转录组分析[J].江苏农业学报,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
YE Wei-jun,WU Ze-jiang,TIAN Dong-feng,et al.Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean[J].,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]