[1]李敏,郭聪,李玉娟,等.旱柳转录组测序及生物学分析[J].江苏农业学报,2019,(02):271-281.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
 LI Min,GUO Cong,LI Yu-juan,et al.Transcriptome sequencing and biological analysis of willow (Salix matsudana)[J].,2019,(02):271-281.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
点击复制

旱柳转录组测序及生物学分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
271-281
栏目:
遗传育种·生理生化
出版日期:
2019-04-30

文章信息/Info

Title:
Transcriptome sequencing and biological analysis of willow (Salix matsudana)
作者:
李敏郭聪李玉娟冯新民王莹张健谈峰
(江苏沿江地区农业科学研究所,江苏南通226541)
Author(s):
LI MinGUO CongLI Yu-juanFENG Xin-minWANG YingZHANG JianTAN Feng
(Institute of Agricultural Sciences of Jiangsu Changjiang River Bank District, Nantong 226541, China)
关键词:
旱柳转录组分析盐胁迫差异表达基因
Keywords:
Salix matsudanatranscriptome analysissalt stressdifferentially expressed gene
分类号:
S718.43
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.005
文献标志码:
A
摘要:
对盐敏感旱柳沿江柳和耐盐旱柳9901的杂交F1代根部进行了RNA-Seq测序和分析,共获取了107 950条Unigene,平均长度为1 076.96 bp。通过与COG、GO等8个数据库比对,60 848个基因获得注释信息,其中38 182条Unigene在GO数据库中获得注释,24 101条Unigene在KEGG数据库中获得注释。GO和KEGG富集分析结果表明,差异表达基因主要调节核糖体代谢、植物激素信号转导等生物学功能。
Abstract:
In this study, RNA-Seq sequencing and analysis were performed on the roots of F1 hybrids of salt sensitive Yanjiang Salix matsudana and salt tolerant 9901 S. matsudana, and a total of 107 950 unigenes were obtained. The average length was 1 076.96 bp. By comparing with eight databases including COG and GO, annotation informations of 60 848 genes were obtained, of which 38 182 unigenes were annotated in the GO database and 24 101 unigenes were annotated in the KEGG database. The GO and KEGG enrichment analysis results showed that differentially expressed genes regulated some biological functions, such as ribosome metabolism and phytohormone signal transduction.

参考文献/References:

[1]SHABALA S, CUIN T A. Potassium transport and plant salt tolerance[J]. Physiol Plant, 2008, 133(4):651-669.
[2]NAN G, ZHANG Y, LI S, et al. NaCl stress-induced transcriptomics analysis of Salix linearistipularis (Salix mongolica) [J]. J Biol Res (Thessalon), 2016,23: 1.
[3]CHINNUSAMY V, ZHU J, ZHU J K. Salt stress signaling and mechanisms of plant salt tolerance[J]. Genet Eng, 2006, 27: 141-177.
[4]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
[5]CHEN S, POLLE A. Salinity tolerance of Populus[J]. Plant Biol (Stuttg), 2010,12(2): 317-333.
[6]NISHIYAMA R, LE D T, WATANABE Y, et al. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency[J]. PLoS ONE, 2012,7(2):e32124.
[7]WARD J M, HIRSCHI K D, SZE H. Plants pass the salt[J]. Trends Plant Sci, 2003, 8(5): 200-201.
[8]NISHIYAMA R, WATANABE Y, FUJITA Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. Plant Cell, 2011,23(6):2169-2183.
[9]KRASENSKY J, JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4): 1593-1608.
[10]SANCHEZ-BARRENA M J, MARTINEZ-RIPOLL M, ZHU J K, et al. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response[J]. J Mol Biol, 2005, 345(5): 1253-1264.
[11]NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends Plant Sci, 2005,10(7): 339-346.
[12]XU P, LIU Z, FAN X, et al. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress[J]. Gene, 2013, 525(1): 26-34.
[13]BUYUK I, INAL B, ILHAN E, et al. Genome-wide identification of salinity responsive HSP70s in common bean[J]. Mol Biol Rep, 2016, 43(11): 1251-1266.
[14]TSUKAGOSHI H, SUZUKI T, NISHIKAWA K, et al. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity[J]. PLoS ONE, 2015, 10(2): e0118339.
[15]BUSHMAN B S, AMUNDSEN K L, WARNKE S E, et al. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress[J]. BMC Genomics, 2016, 17: 48.
[16]LONG W, ZOU X, ZHANG X. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage[J]. PLoS ONE, 2015,10(2): e0116217.
[17]ZHANG J, JIANG D, LIU B, et al. Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress[J]. Plant Cell Rep, 2014,33(9): 1565-1579.
[18]GOYAL E, AMIT S K, SINGH R S, et al. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local[J]. Sci Rep, 2016, 6: 27752.
[19]KUMARI S, SABHARWAL V P, KUSHWAHA H R, et al. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.[J]. Funct Integr Genomics, 2009, 9(1): 109-123.
[20]OHTSU K, SMITH M B, EMRICH S J, et al. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.) [J]. Plant J, 2007, 52(3): 391-404.
[21]WEBER A P, WEBER K L, CARR K, et al. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing[J]. Plant Physiol, 2007, 144(1): 32-42.
[22]李敏,王莹,李玉娟,等. 2个柳树亲本耐盐性比较试验[J]. 浙江农业科学, 2017(7):1220-1222.
[23]WICKER T, SCHLAGENHAUF E, GRANER A, et al. 454 sequencing put to the test using the complex genome of barley[J]. BMC Genomics, 2006, 7: 275.
[24]MOROZOVA O, HIRST M, MARRA M A. Applications of new sequencing technologies for transcriptome analysis[J]. Annu Rev Genomics Hum Genet, 2009,10: 135-151.

相似文献/References:

[1]张进兵,沈春修,王舸泓,等.东乡野生稻苗期耐冷QTL qCTS11.2位点候选基因LOC_Os11g35390-DX的克隆、生物信息学分析及遗传转化[J].江苏农业学报,2020,(06):1612.[doi:doi:10.3969/j.issn.1000-4440.2020.06.035]
 ZHANG Jin-bing,SHEN Chun-xiu,WANG Ge-hong,et al.Cloning, bioinformatic analysis and genetic transformation of candidate gene LOC_Os11g35390-DX at QTL qCTS11.2 in Dongxiang wild rice[J].,2020,(02):1612.[doi:doi:10.3969/j.issn.1000-4440.2020.06.035]
[2]叶卫军,吴泽江,田东丰,等.绿豆窄叶突变体vrnl9基因的精细定位与转录组分析[J].江苏农业学报,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
 YE Wei-jun,WU Ze-jiang,TIAN Dong-feng,et al.Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean[J].,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]

备注/Memo

备注/Memo:
收稿日期:2018-04-28 基金项目:江苏省重点研发计划“现代农业”项目(BE2016328);第十四批“六大人才高峰”高层次人才项目(2017-NY-141) 作者简介:李敏(1981-),女,江苏如东人,硕士,副研究员,研究方向为耐盐林木育种与栽培,(E-mail)alice04@163.com 通讯作者:郭聪,(E-mail)guocong5532@126.com
更新日期/Last Update: 2019-05-05