[1]朱守晶,史文娟.苎麻镉响应基因BnG6PDH1的克隆和表达分析[J].江苏农业学报,2019,(02):262-270.[doi:doi:10.3969/j.issn.1000-4440.2019.02.004]
 ZHU Shou-jing,SHI Wen-juan.Cloning and expression analysis of cadmium-responsive gene BnG6PDH1 from ramie (Boehmeria nivea L.)[J].,2019,(02):262-270.[doi:doi:10.3969/j.issn.1000-4440.2019.02.004]
点击复制

苎麻镉响应基因BnG6PDH1的克隆和表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
262-270
栏目:
遗传育种·生理生化
出版日期:
2019-04-30

文章信息/Info

Title:
Cloning and expression analysis of cadmium-responsive gene BnG6PDH1 from ramie (Boehmeria nivea L.)
作者:
朱守晶12史文娟1
(1.宜春学院生命科学与资源环境学院,江西宜春336000;2.江西省作物生长发育调控重点实验室,江西宜春336000)
Author(s):
ZHU Shou-jing12SHI Wen-juan1
(1.College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China;2.Jiangxi Key Laboratory of Regulation and Control of Crop Growth and Development , Yichun 336000, China)
关键词:
苎麻葡萄糖-6-磷酸脱氢酶镉响应基因BnG6PDH1基因克隆表达分析
Keywords:
Boehmeria niveaglucose-6-phosphate dehydrogenasecadmium-responsive gene BnG6PDH1gene cloneexpression analysis
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.004
文献标志码:
A
摘要:
葡萄糖-6-磷酸脱氢酶(G6PDH)是磷酸戊糖代谢途径的关键限速酶,为探讨G6PDH基因在苎麻耐镉机制中的作用,本研究在苎麻镉胁迫转录组的基础上,采用RACE方法从苎麻(Boehmeria nivea L.)品种中苎一号中克隆到BnG6PDH1基因(GenBank登录号为MG941010)的全长cDNA序列,该基因开放读码框为1 554 bp,编码517个氨基酸,蛋白质分子量为59 250,等电点为5.92。BnG6PDH1编码的氨基酸与川桑(XP_010111634.1)、枣(XP_015878928.1)、甜樱桃(XP_021825040.1)、苹果(XP_008362117.1)和梅(XP_008231184.1)的胞质型G6PDH蛋白的相似性较高,相似度分别为92%、91%、89%、88%和88%。组织表达特异性分析结果表明,BnG6PDH1在苎麻叶中的表达量最高,其次为茎,根部的表达量最低。镉胁迫诱导表达分析结果表明,BnG6PDH1的显著表达受镉的诱导,表达量随着镉质量浓度的增加而增加。以上结果表明,BnMYB1是一个镉应答基因,可能在植物对镉胁迫的适应中发挥重要作用。
Abstract:
Glucose-6-phosphate dehydrogenase is a main regulatory enzyme for pentose phosphate pathway. In this paper, a G6PDH gene named BnG6PDH1 (GenBank accession: MG941010) was isolated from ramie (Boehmeria nivea L.) by amplification of cDNA ends (RACE) based on the analysis of expression profiling of cadmium response genes in ramie. The open reading frame of BnG6PDH1 was 1 554 bp, and 517 amino acid residues were encoded. The predicted protein was 59 250 with isoelectric point of 5.92. The similarity comparison revealed that the deduced amino acid sequence shared 92%, 91%, 89%, 88% and 88% of similarity with Morus notabilis (XP_010111634.1), Ziziphus jujuba (XP_015878928.1), Prunus avium (XP_021825040.1), Malus domestica (XP_008362117.1) and Prunus mume (XP_008231184.1). The results of specificity analysis showed that the expression of BnG6PDH1 was in leaf and the lowest in root. Furthermore, BnG6PDH1 gene was significantly induced by cadmium stress, and the expression of BnG6PDH1 increased with the increase of Cd2+ concentration. Collectively, the results suggest that BnG6PDH1 is a cadmium-responsive factor and may play an important role in the plant adaption to cadmium stress.

参考文献/References:

[1]徐奕,梁学峰,彭亮,等. 农田土壤重金属污染黏土矿物钝化修复研究进展[J]. 山东农业科学,2017,49(2):156-162,167.
[2]陈怀满.土壤-植物系统中的重金属污染[M].北京:北京出版社, 2005.
[3]公勤,康群,王玲,等. 重金属铜对植物毒害机理的研究现状及展望[J]. 南方农业学报,2018,49(3):469-475.
[4]刘晨,贾凤安,吕睿.我国耕地重金属污染现状及固氮菌在其修复中的作用[J]. 江苏农业科学,2018,46(3):21-27.
[5]CHRISTENSEN T H. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals[J]. Water Air and Soil Pollution, 1987, 34(3): 293-303.
[6]TOPPI L S D, GABBRIELLI R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999, 41(2):105-130.
[7]CHANEY R L, REEVES P G, RYAN J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals,2004, 17(5): 549-553.
[8]SHAH K, NONGKYNRIH J M. Metal hyperaccumulation and bioremediation[J]. Biologia Plantarum, 2007, 51(4): 618-634.
[9]BOWSHER C G, HUCKLESBY D P, EMES M J. Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L.[J]. Planta, 1989, 177(3): 359-366.
[10]ESPOSITO S, MASSARO G, VONA V, et al. Glutamate synthesis in barley roots: the role of the plastidic glucose-6-phosphate dehydrogenase[J]. Planta, 2003, 216(4): 639-647.
[11]HUTCHINGS D, RAWSTHORNE S, EMES M J. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.)[J]. Journal of Experimental Botany, 2005, 56(412): 577-585.
[12]LIN Y Z, ZHANG Z Y, LIN S Z, et al. High level expression of glucose-6-phosphate dehydrogenase gene PsG6PDH from Populus suaveolens in E. coli[J]. Forest Ecosystems, 2005, 7(3): 35-38.
[13]GRAEVE K, SCHAEWEN A, SCHEIBE R. Purification,characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.)[J].The Plant Journal, 1994, 5(3): 353-361.
[14]WAKAO S, BENNING C. Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis[J]. Plant Journal, 2005, 41(2): 243-256.
[15]NEMOTO Y, SASAKUMA T. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.)[J]. Plant Science, 2000, 158(2): 53-61.
[16]KNIGHT J S, EMES M J, DEBNAM P M. Isolation and characterisation of a full-length genomic clone encoding a plastidic glucose 6-phosphate dehydrogenase from Nicotiana tabacum[J]. Planta, 2001, 212(4): 499-507.
[17]FAHRENDORF T, NI W, SHORROSH B S, et al. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response[J]. Plant Molecular Biology, 1995, 28(5): 885-900.
[18]SCHARTE J, SCHN H, TJADEN Z, et al. Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19): 8061-8066.
[19]WANG H, YANG L, LI Y, et al. Involvement of ABA and H2O2 dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress[J]. Plant Physiology and Biochemistry, 2016, 107: 126-136.
[20]林元震,张志毅,郭海,等. 甜杨PsG6PDH基因超表达对提高烟草抗寒冻性的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(3): 125-131.
[21]CARRERAS A. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants[J]. Plant Cell and Environment, 2006, 29(7): 1449-1459.
[22]DEBNAM P M, FERNIE A R, LEISSE A, et al. Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves[J].Plant Journal, 2004, 38(1): 49-59.
[23]SLASKI J J, ZHANG G C, BASU U, et al. Aluminum resistance in wheat (Triticum aestivum) is associated with rapid, Al-induced changes in activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in root apices[J].Physiologia Plantarum, 1996, 98(3): 477-484.
[24]LIN S Z, ZHANG Z Y, LIU W F, et al. Role of glucose-6-phosphate dehydrogenase in freezing-induced freezing resistance of Populus suaveolens[J]. Acta Photophysiologica Sinica, 2005, 31(1): 34-40.
[25]LIU J, WANG X M, HU Y F, et al. Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots[J]. Plant Cell Reports, 2013, 32(3): 415-429.
[26]INDELR L, INDELROV M, BURKETOV L. Changes in activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase isozymes upon potato virus Y infection in tobacco leaf tissues and protoplasts[J]. Plant Physiology and Biochemistry, 1999, 37(3): 195-201.
[27]李宗道. 麻作的理论与技术[M].上海: 上海科学技术出版社, 1980: 124-256.
[28]雷梅,岳庆玲,陈同斌,等. 湖南柿竹园矿区土壤重金属含量及植物吸收特征[J]. 生态学报, 2005, 25(5): 1146-1151.
[29]曹德菊,周世杯,项剑. 苎麻对土壤中镉的耐受和积累效应研究[J]. 中国麻业科学, 2004, 26(6): 272-274.
[30]朱守晶,史文娟,揭雨成. 不同苎麻品种对土壤中镉、铅富集的差异[J].江苏农业学报,2018,34(2):320-326.
[31]佘玮,揭雨成,邢虎成,等. 湖南石门、冷水江、浏阳3 个矿区的苎麻重金属含量及累积特征[J]. 生态学报, 2011, 31 (3): 874-881.
[32]朱守晶,余伟林,石朝燕,等. 苎麻谷胱甘肽还原酶基因(BnGR1)的克隆和表达分析[J]. 农业生物技术学报, 2015, 23(10): 1318-1326.
[33]SHE W, ZHU S J, JIE Y C, et al. Expression profiling of cadmium response genes in ramie (Boehmeria nivea L.) root[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(4): 453-459.
[34]GEIGENBERGER P, KOLBE A, TIESSEN A. Redox regulation of carbon storage and partitioning in response to light and sugars[J]. J Exp Bot, 2005, 56(416): 1469-1479.
[35]ZHANG Z, LIEW C W, HANDY D E, et al. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis[J]. Faseb Journal, 2010, 24(5): 1497.
[36]DENNIS D T, MIERNYK J A. Compartmentation of nonphotosynthetic carbohydrate metabolism[J]. Annual Review of Plant Physiology, 1982, 33(1): 27-50.
[37]SAKAI A, RCHER W. Frost survival of plants responses and adaptation to freezing stress[M]. New York: Springer Verlag, 1987: 210-222.
[38]王晓晖,刘晓,高博闻,等. 腊梅葡萄糖-6-磷酸脱氢酶(G6PDH1)基因的克隆及表达分析[J]. 中国中药杂志, 2015, 40(21): 4160-4164.
[39]侯夫云. 水稻戊糖磷酸途径两个关键酶基因的克隆与功能分析[D]. 南京:南京农业大学, 2005.
[40]VAN A F, CARDINAELS C, CLIJSTERS H. Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L. treated with zinc and cadmium[J]. Environmental Pollution, 1988, 52(2): 103-115.
[41]李焱. NO和葡萄糖-6-磷酸脱氢酶在大豆铝胁迫响应中的调节作用研究[D].新乡:河南师范大学, 2017.
[42]钱立生,王松华,何庆元. 小麦幼苗根系抗氧化酶对镍胁迫的响应[J]. 核农学报, 2014, 28(9): 1708-1714.

相似文献/References:

[1]朱守晶,史文娟,揭雨成.不同苎麻品种对土壤中镉、铅富集的差异[J].江苏农业学报,2018,(02):320.[doi:doi:10.3969/j.issn.1000-4440.2018.02.014]
 ZHU Shou-jing,SHI Wen-juan,JIE Yu-cheng.Variety difference in cadmium and lead accumulation by ramie (Boehmeria nivea) from soil[J].,2018,(02):320.[doi:doi:10.3969/j.issn.1000-4440.2018.02.014]
[2]朱守晶,肖祥云,史文娟.苎麻BnNramp2基因的克隆与生物信息学分析[J].江苏农业学报,2019,(03):749.[doi:doi:10.3969/j.issn.1000-4440.2019.03.035]
 ZHU Shou-jing,XIAO Xiang-yun,SHI Wen-juan.Cloning and bioinformatic analysis of BnNramp2 from ramie (Boehmeria nivea L.)[J].,2019,(02):749.[doi:doi:10.3969/j.issn.1000-4440.2019.03.035]

备注/Memo

备注/Memo:
收稿日期:2018-06-26 基金项目:江西省教育厅科学技术研究项目(GJJ161008);江西省作物生长发育调控重点实验室开放基金项目(KFJJ201703) 作者简介:朱守晶(1985-),男,安徽淮南人,博士,讲师,主要从事苎麻耐镉分子机理研究。(E-mail)zhusj85@sina.com
更新日期/Last Update: 2019-05-05