参考文献/References:
[1]张敏恒. 磺酰脲类除草剂的发展现状、市场与未来趋势[J]. 农药, 2010, 49(4): 235-245.
[2]MCCOURT J A, DUGGLEBY R G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids[J]. Amino Acids, 2006, 31(2): 173-210.
[3]MCCOURT J A, PANG S S, KING-SCOTT J, et al. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 569-573.
[4]SADA Y, UCHINO A. Biology and mechanisms of sulfonylurea resistance in Schoenoplectiella juncoides, a noxious sedge in the rice paddy fields of Japan[J]. Weed Biology and Management, 2017, 17(3): 125-135.
[5]DENG W, YANG Q, ZHANG Y Z, et al. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation[J]. Pesticide Biochemistry & Physiology, 2017, 136: 41-45.
[6]LEE H, RUSTGI S, KUMAR N, et al. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(21): 8909-8913.
[7]HU M L, PU H M, KONG L N, et al. Molecular characterization and detection of a spontaneous mutation conferring imidazolinone resistance in rapeseed and its application in hybrid rapeseed production[J]. Molecular Breeding, 2015, 35(1): 46.
[8]LI J, LI M, GAO X X, et al. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis)[J]. Pest Management Science, 2017, 73(12): 2538-2543.
[9]TRANEL P J, WRIGHT T R, HEAP I M. Mutations in herbicide-resistant weeds to ALS inhibitors[DB/OL].
[2018-09-15]. http://www.weedscience.com/Mutations/MutationDisplayAll.aspx.
[10]SWANSON E B, COUMANS M P, BROWN G L, et al. The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts[J]. Plant Cell Reports, 1988, 7(2): 83-87.
[11]SWANSON E B, HERRGESELL M J, Arnoldo M, et al. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones[J]. Theoretical and Applied Genetics, 1989, 78(4): 525-530.
[12]MAGHA M I, GUERCHE P, BREGEON M, et al. Characterization of a spontaneous rapeseed mutant tolerant to sulfonylurea and imidazolinone herbcides[J]. Plant Breeding, 2010, 111(2): 132-141.
[13]高建芹,浦惠明,戚存扣,等. 抗咪唑啉酮油菜种质的发现与鉴定[J]. 植物遗传资源学报, 2010, 11(3): 369-373.
[14]胡茂龙,浦惠明,高建芹,等. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆[J]. 中国农业科学, 2012, 45(20): 4326-4334.
[15]浦惠明,胡茂龙,高建芹,等. 一种基于ALS靶酶的抗除草剂油菜定向选育方法:CN103070068A [P]. 2013-05-01.
[16]胡茂龙,浦惠明,龙卫华,等. 一种甘蓝型油菜抗磺酰脲类除草剂基因及其应用:CN103266118A [P]. 2013-08-28.
[17]WEILAND J J, YU M H. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet[J]. Crop Science, 2003, 43(5): 1814-1818.
[18]LIU W T, YUAN G H, DU L, et al. A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad-spectrum resistance across ALS inhibitors[J]. Pesticide Biochemistry & Physiology, 2015, 117: 31-38.
[19]MASSA D, KRENZ B, GERHARDS R. Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and previously unknown mutations[J]. Weed Research, 2011, 51(3): 294-303.
[20]任海,吕小红,杜萌.多抗水稻分子标记辅助育种方法[J].江苏农业科学,2017,45(19):154-158.
[21]周丽霞,吴翼,肖勇. 基于SSR分子标记的油棕遗传多样性分析[J]. 南方农业学报 ,2017,48(2):216-221.
[22]孙大元,周丹华,张景欣,等.广谱抗源H4中2个主效抗病基因的单基因系构建及评价[J].江苏农业学报,2017,33(1):1-5.
[23]邓琳,余小刚,姜朵,等. 棉花分子育种研究进展[J].山东农业科学,2017,49(5):144-150.
[24]王亚琦,孙子淇,郑峥,等.作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,46(5):6-12.
[25]YU Q, NELSON J K, ZHENG M Q, et al. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes[J]. Pest Management Science, 2007, 63(9): 918-927.
[26]YU Q, HAN H P, POWLES S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations[J]. Pest Management Science, 2008, 64(12): 1229-1236.
[27]邓维. 抗苯磺隆播娘蒿抗性机理及抗性突变对乙酰乳酸合成酶功能影响[D]. 北京: 中国农业大学, 2017.
[28]LI H T, LI J J, ZHAO B, et al. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2015, 128(1): 107-118.
[29]曲高平,孙妍妍,庞红喜,等. 甘蓝型油菜EMS突变体库构建及抗除草剂突变体筛选[J]. 中国油料作物学报, 2014, 36(1): 25-31.
[30]孙妍妍,曲高平,黄谦心,等. 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记[J]. 中国油料作物学报, 2015, 37(5): 589-595.
相似文献/References:
[1]付三雄,周晓婴,张 维,等.种植密度和施氮量对油菜产量、品质及机收性状的影响[J].江苏农业学报,2016,(03):548.[doi:10.3969/j.issn.1000-4440.2016.03.010]
FU San-xiong,ZHOU Xiao-ying,ZHANG Wei,et al.Influences of planting density and nitrogen application rate on yield and quality and mechine harvest traits of rapeseed(Brassica napus L.)[J].,2016,(02):548.[doi:10.3969/j.issn.1000-4440.2016.03.010]
[2]陈魏涛,曹宏鑫,张保军,等.氮素营养诊断技术及其在油菜上的应用研究进展[J].江苏农业学报,2016,(04):953.[doi:10.3969/j.issn.100-4440.2016.04.038]
CHEN Wei-tao,CAO Hong-xin,ZHANG Bao-jun,et al.Research progresses in nitrogen diagnosis technology and its application in rapeseed[J].,2016,(02):953.[doi:10.3969/j.issn.100-4440.2016.04.038]
[3]周晓婴,付三雄,陈松,等.甘蓝型油菜CRABS CLAW基因克隆及其RNA干扰载体的构建[J].江苏农业学报,2015,(04):737.[doi:10.3969/j.issn.1000-4440.2015.04.005]
ZHOU Xiao-ying,FU San-xiong,CHEN Song,et al.Cloning of CRABS CLAW gene from Brassica napus and construction of its RNA interference vector[J].,2015,(02):737.[doi:10.3969/j.issn.1000-4440.2015.04.005]
[4]熊洁,邹晓芬,邹小云,等.干旱胁迫对不同基因型油菜农艺性状和产量的影响[J].江苏农业学报,2015,(03):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
XIONG Jie,ZOU Xiao-fen,ZOU Xiao-yun,et al.Effects of drought stress on agronomic traits and yield of different rapeseed genotypes[J].,2015,(02):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
[5]熊洁,李书宇,邹晓芬,等.轻简化育苗移栽方式对油菜生长发育和产量的影响[J].江苏农业学报,2015,(02):317.[doi:10.3969/j.issn.1000-4440.2015.02.015]
XIONG Jie,LI Shu-yu,ZOU Xiao-fen,et al.Effects of simplified seedling and transplanting patterns on growth and development and yield of rapeseed[J].,2015,(02):317.[doi:10.3969/j.issn.1000-4440.2015.02.015]
[6]李茹,陈国奇,张玉华,等.油菜和小麦秸秆水浸提液对千金子种子萌发和幼苗生长的影响及其应用[J].江苏农业学报,2018,(02):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
LI Ru,CHEN Guo-qi,ZHANG Yu-hua,et al.Influences of oilseed rape and wheat aquatic straw extract on Leptochloa chinensis seed germination and seedling growth, and the application potential[J].,2018,(02):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
[7]葛道阔,曹宏鑫,杨余旺,等.干旱胁迫下油菜栽培模拟优化决策系统(Rape-CSODS)的订正及其检验[J].江苏农业学报,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Modification and verification of Rape-CSODS under drought stress[J].,2019,(02):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
[8]岳绪国,葛永申,景德道,等.移栽密度和方式对不同类型油菜品种产量及构成的调控效应[J].江苏农业学报,2019,(01):63.[doi:doi:10.3969/j.issn.1000-4440.2019.01.009]
YUE Xu-guo,GE Yong-shen,JING De-dao,et al.Effects of density and transplanting method on yield and yield components of different types of rapeseed[J].,2019,(02):63.[doi:doi:10.3969/j.issn.1000-4440.2019.01.009]
[9]万倩,曹宏鑫,葛道阔,等.不同施肥量下花期渍水胁迫对油菜籽粒充实过程的定量影响[J].江苏农业学报,2020,(05):1144.[doi:doi:10.3969/j.issn.1000-4440.2020.05.011]
WAN Qian,CAO Hong-xin,GE Dao-kuo,et al.Quantitative effects of waterlogging stress at florescence stage on the grain filling process of rape under different fertilization amounts[J].,2020,(02):1144.[doi:doi:10.3969/j.issn.1000-4440.2020.05.011]
[10]张伟欣,吴茜,孙传亮,等.油菜株型模拟研究进展[J].江苏农业学报,2022,38(02):549.[doi:doi:10.3969/j.issn.1000-4440.2022.02.031]
ZHANG Wei-xin,WU Qian,SUN Chuan-liang,et al.Research progress on plant type simulation of rapeseed[J].,2022,38(02):549.[doi:doi:10.3969/j.issn.1000-4440.2022.02.031]