[1]许仙菊,张永春.植物耐低磷胁迫的根系适应性机制研究进展[J].江苏农业学报,2018,(06):1425-1429.[doi:doi:10.3969/j.issn.1000-4440.2018.06.031]
 XU Xian-ju,ZHANG Yong-chun.Research progress on the root adaptation mechanism of plants under low phosphorus stress[J].,2018,(06):1425-1429.[doi:doi:10.3969/j.issn.1000-4440.2018.06.031]
点击复制

植物耐低磷胁迫的根系适应性机制研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
1425-1429
栏目:
综述
出版日期:
2018-12-25

文章信息/Info

Title:
Research progress on the root adaptation mechanism of plants under low phosphorus stress
作者:
许仙菊张永春
(江苏省农业科学院农业资源与环境研究所/农业部江苏耕地保育科学观测实验站,江苏南京210014)
Author(s):
XU Xian-juZHANG Yong-chun
(Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences/ Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture, Nanjing 210014, China)
关键词:
植物低磷胁迫根系分泌物根际环境磷养分有效性
Keywords:
plantlow phosphorus stressroot exudaterhizospherephosphorus availability
分类号:
Q945.78
DOI:
doi:10.3969/j.issn.1000-4440.2018.06.031
文献标志码:
A
摘要:
低磷胁迫是限制植物生长的主要因子之一。虽然农田每年施入大量磷肥,土壤也累积了较高的磷,但是一些植物仍会表现出缺磷,施磷仍能增产。植物磷肥当季利用率很低,一般只有20%~30%,这造成了磷资源的浪费,增加了磷的潜在环境风险。磷肥利用率低的主要原因是土壤累积的磷不能被植物全部吸收利用,根系是植物吸收磷的最主要器官,植物根系对磷的吸收是植物耐低磷能力和磷肥利用率的关键。本文综述了低磷胁迫下植物根系形态和构型的变化,根系分泌物对低磷胁迫的响应特征和根际土壤难溶性磷的活化机制,着重阐述了这些根系形态、生理和化学变化与植物耐低磷之间的关系。在此基础上,对将来的研究进行了展望,特别强调了需要在现有机制上能有所突破和推进,并加强低磷胁迫下植物根系的改良和遗传育种方面的理论研究和实际应用。
Abstract:
Low phosphorus (P) stress is one of the primary factors limiting plant growth. Although large amounts of P fertilizers were applied in the field and accumulated in soils, P fertilizer was still effective in some plants due to the deficiency of P. The utilization rate of P was very low, accounting for only 20%-30% of applied P fertilizer, which coused the waste of resource and increased the potential environmental risk. The main reason for the low utilization rate of P fertilizer was that the P accumulated in soil couldn’t be fully absorbed by plants. Root is the main organ for the absorption of P by plants, so the key of improving P use efficiency and enhancing plant tolerance to low P was to increase the ability of nutrient uptake of plant roots. This paper summarized the effects of low P stress on the root architecture, root exudates, and mobilization of non-soluble P in soils. The relationship between these effects and the mechanisms of plants’ adaptation to low P was emphasized. Following this, we give some recommendations on the future research in this field, especially on the theoretical breakthrough and practical application of root modification and genetic breeding under low P stress.

参考文献/References:

[1]陆景陵,张福锁,曹一平. 植物营养学(上)[M]. 北京: 中国农业大学出版社, 2001.
[2]中国土壤学会农业专业委员会. 土壤农业化学常规分析方法[M]. 北京: 科学出版社, 1989.
[3]李庆逵,朱兆良,于天仁. 中国农业持续发展中的肥料问题[M]. 南昌: 江西科学技术出版社, 1988.
[4]JOHNSTON A E. Fertilizers and agriculture: fifty years of developments and challenges[M]. York: The Fertilizer Society ,1994.
[5]董秋平,赵恢,张小芳,等.低磷胁迫下不同野生大豆的形态和生理响应差异[J].江苏农业科学,2017,45(9):79-83.
[6]田孝忠,曹季江.磷肥残效研究[J].土壤, 1997(5):251-253.
[7]赵华,徐芳森,石磊,等. 植物根系形态对低磷胁迫应答的研究进展[J]. 植物学通报, 2006, 23(4):409-417.
[8]朱兆良.我国氮肥的使用现状、问题和对策[M].南京: 江苏科学技术出版社, 1998.
[9]JOHNSTON A E, POULTON P R. Defining critical levels of available soil phosphorus for agricultural crops[C]//TUNNEY H. Phosphorus loss from soil to water. New York: CAB International,1997:441-445.
[10]SELLES F, CAMPBELL C A, ZENTNER P R. Effect of cropping and fertilization on plant and soil-phosphorus[J]. Soil Sci Soc Am J,1995, 59:140-144.
[11]AULAKH M S, GARG A K, KABBA B S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics[J]. Soil Use Manage,2007, 23:417-427.
[12]BONSER A, LYNCHJ P, SNAPP S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytol,1996, 132:281-288.
[13]张淼,赵书岗,耿丽平,等. 缺磷对不同作物根系形态及体内养分浓度的影响[J]. 植物营养与肥料学报,2013,19(3):577-585.
[14]LIU Y, MI G, CHEN F, et al. Phizosphere effect and root growth of two maize(Zea mays L.) genotypes with contrasting P efficiency at low P a-vailability[J]. Plant Sci, 2004, 167: 217-223.
[15]曹翠玲,毛圆辉,曹朋涛,等. 低磷胁迫对豇豆幼苗叶片光合特性及根系生理特性的影响[J]. 植物营养与肥料学报,2010, 16(6): 1373-1378.
[16]李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,43(11): 1154-1160.
[17]LIU C, MUCHHAL U S, MUKATIRA U, et al. To-mato phosphate transporter genes are differentially regulated in plant tis-sues by Phosphorus[J]. Plant Physiol, 1998, 116: 91-99.
[18]BATES T R, LYNCH J P.The efficiency of Arabidopsis thaliana (Brassi-caceae) root hairs in Phosphorus acquisition[J]. Am J Bot, 2000, 87:964-970.
[19]乔振江,蔡昆争,骆世明. 低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响[J]. 生态学报,2011,31(19):5578-5587.
[20]马建华,王玉国,孙毅,等. 低磷胁迫对不同品种高粱苗期形态及生理指标的影响[J]. 植物营养与肥料学报,2013,19(5):1083-1091.
[21]刘鸿雁,黄建国,魏成熙,等. 磷高效基因型玉米的筛选研究[J]. 土壤肥料, 2004 (5):26-29.
[22]袁硕,彭正萍,沙晓晴,等. 玉米杂交种对缺磷反应的生理机制及基因型差异[J]. 中国农业科学, 2010, 43(1):51-58.
[23]陈磊,王盛锋,刘荣乐,等. 不同磷供应水平下小麦根系形态及根际过程的变化特征[J]. 植物营养与肥料学报, 2012, 18(2) :324-331.
[24]曹爱琴,廖红,严小龙. 低磷土壤条件下菜豆根构型的适应性变化与磷效率[J]. 土壤学报, 2002,39(2):276-281.
[25]LYNCH J P, BROWN K M.Topsoil foraging: an architectural adaptation of plants to low phosphorus[J]. Plant Soil, 2001, 237: 225-237.
[26]JONES D L, HODGE A, KUZYAKOV Y.Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytol, 2004, 163: 459-480.
[27]申建波,张福锁,毛达如. 磷胁迫下大豆根分泌有机酸的动态变化[J]. 中国农业大学学报,1998,3(增刊):44-48.
[28]张振海. 有机酸和质膜H+-ATPase参与不同基因型大豆都对低磷胁迫应答的研究[D]. 保定: 河北农业大学, 2009.
[29]沈宏,严小龙. 低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积[J]. 生态学报,2002,22(3):387-394
[30]LIPTON D S, BLANCHAR R W, BLEVINS D G. Citrate, malate and succincte concentration inexudates for P-suf-ficient and P-stressed Medicago sativa L. seedlings[J]. Plant Physiology, 1987, 85: 315-317.
[31]MIMURA T, DIETZ K J, KAISER W, et al. Phosphate transport across biomembranes and cytosolic phos-phate homeostasis in barley leaves[J]. Planta, 1990, 180: 139-146.
[32]田中民,李春俭,王晨,等. 缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较[J]. 植物生理学报, 2000, 26(4):317-322.
[33]李春俭. 植物对缺磷的适应性反应及其意义[J]. 世界农业, 1999(7):35.
[34]KEERTHISINGHE G, HOCKING PJ, RYAN PR, et al. Effect of Phosphor-us supply on the formation and function of proteoid roots of white lupin[J].Plant Cell Environ, 1998, 21: 467-478.
[35]KAMH M, HORST W J, AMER F, et al. Mobilization of soil and fertilizer phosphate by cover crops[J]. Plant and Soil, 1999, 211: 19-27.
[36]张振海,陈琰,韩胜芳,等. 低磷胁迫对大豆根系生长特性及分泌H+和有机酸的影响[J]. 中国油料作物学报, 2011, 33(2):35-40.
[37]张海伟,黄宇,叶祥盛,等. 低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析[J]. 中国科学, 2010, 40( 5):418-427.
[38]庞欣,张福锁,李春俭. 部分根系供磷对黄瓜根系和幼苗生长及根系酸性磷酸酶活性影响[J]. 植物生理学报, 2000, 26(2):153-158.
[39]刘璇,闫海丽,张淑香. 石灰性土壤上两种磷效率小麦根际特征差异[J]. 中国土壤与肥料, 2009 (4): 37-39.
[40]TANDANO T, SAKAI T. Secretion of acid phosphatase by the roots of everal crop speeies under phosphorus defieient conditions [J]. Soil Sci Plant Nutr, 1991, 37(1):129-140.
[41]邱双,闫双堆,刘利军. 不同谷子品种耐低磷能力研究[J]. 作物杂志,2017(2):139-144.
[42]徐静,张锡州,李廷轩,等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异[J]. 草业学报,2015,24(1):88-98.
[43]孙海国,张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究[J]. 应用生态学报, 2002, 13(3):379-381.
[44]GEIERSON P F. Organic acids in the rhizosphere of Banksia integri-folia LF[J]. Plant and Soil, 1992, 144:259-265.
[45]张锡洲,阳显斌,李廷轩,等. 不同磷效率小麦对磷的吸收及根际土壤磷组分特征差异[J]. 中国农业科学, 2012, 45(15):3083-3092.
[46]赵明,沈宏,严小龙. 不同菜豆基因型根系对难溶性磷的活化吸收[J]. 植物营养与肥料学报, 2002, 8(4):435-440.
[47]AE N, ARIHARA J, OKADA K, et al., Uptake mechanism of iron-associated phosphorus in pigeon pea growing on Indian Alfsol and its significance to phosphorus availability in cropping systems[J] Proc. 4th. International. Conference Soil Science Society,1990,11(2):164-169.
[48]JONES D L, DARRAH P R. Role of root derived organic acids in the mobilization of nutrients fromthe rhizosphere[J]. Plant and Soil, 1994, 166: 247-257.
[49]陈凯,马敬,曹一平. 磷亏缺下不同植物根系有机酸的分泌[J]. 中国农业大学学报, 1999, 4(3):58-62.
[50]马敬. 磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化[M]. 北京: 北京农业大学, 2004.
[51]NAGARAJAH S, POSNER A M, QUIRK J P. Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces[J]. Nature, 1970, 228:83-84.

相似文献/References:

[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):53.
 ZHANG Hui,ZHANG Xiao jing.三才期刊采编系统文章正在整理中…[J].,2005,(06):53.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):53.
 ZHANG Hui,ZHANG Xiao jing.三才期刊采编系统文章正在整理中…[J].,2006,(06):53.
[3]郭广君,王述彬,刘金兵,等.植物抗黄瓜花叶病毒基因研究进展[J].江苏农业学报,2018,(06):1430.[doi:doi:10.3969/j.issn.1000-4440.2018.06.032]
 GUO Guang-jun,WANG Shu-bin,LIU Jin-bing,et al.Advances in related resistance genes of plant to cucumber mosaic virus[J].,2018,(06):1430.[doi:doi:10.3969/j.issn.1000-4440.2018.06.032]
[4]徐海,宋波,顾宗福,等.植物耐热机理研究进展[J].江苏农业学报,2020,(01):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
 XU Hai,SONG Bo,GU Zong-fu,et al.Advances in heat tolerance mechanisms of plants[J].,2020,(06):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
[5]武坤,孔潇,董郁,等.人工湿地植物对污水中重金属铬、镉、铅富集能力的整合分析[J].江苏农业学报,2022,38(06):1532.[doi:doi:10.3969/j.issn.1000-4440.2022.06.011]
 WU Kun,KONG Xiao,DONG Yu,et al.Meta-analysis of the accumulation ability of wetland plants to chromium, cadmium and lead in wastewater[J].,2022,38(06):1532.[doi:doi:10.3969/j.issn.1000-4440.2022.06.011]
[6]徐彤,王英琪,李渊,等.小分子热激蛋白在植物应对高温胁迫中的作用[J].江苏农业学报,2024,(07):1343.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]
 XU Tong,WANG Yingqi,LI Yuan,et al.Role of small molecule heat shock proteins in plants’ response to high temperature stress[J].,2024,(06):1343.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]

备注/Memo

备注/Memo:
收稿日期:2018-01-19 基金项目:现代农业产业技术体系建设专项(CARS-10-B9);江苏省农业科技自主创新基金项目[CX(15)1004] 作者简介:许仙菊(1976-),女,山西绛县人,博士,副研究员,主要从事土壤质量管理方面的研究。(Tel)025-84391171;(E-mail) xuxianju76@163.com 通讯作者:张永春,(Tel)025-84390242;(E-mail) yczhang66@sina.com
更新日期/Last Update: 2018-12-28