[1]练旺民,徐薇,孟卓玲,等.表油菜素内酯在缓解水稻砷毒害中的作用[J].江苏农业学报,2018,(06):1267-1275.[doi:doi:10.3969/j.issn.1000-4440.2018.06.010]
 LIAN Wang-min,XU Wei,MENG Zhuo-ling,et al.Effects of supplementation of epibrassinolide on alleviation of arsenic stress in rice[J].,2018,(06):1267-1275.[doi:doi:10.3969/j.issn.1000-4440.2018.06.010]
点击复制

表油菜素内酯在缓解水稻砷毒害中的作用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
1267-1275
栏目:
耕作栽培·资源环境
出版日期:
2018-12-25

文章信息/Info

Title:
Effects of supplementation of epibrassinolide on alleviation of arsenic stress in rice
作者:
练旺民徐薇孟卓玲陶之欢金珂郑晶张佳艺刘庆坡
(浙江农林大学农业与食品科学学院,浙江临安311300)
Author(s):
LIAN Wang-minXU WeiMENG Zhuo-lingTAO Zhi-huanJIN KeZHENG JingZHANG Jia-yiLIU Qing-po
(School of Agriculture and Food Science, Zhejiang A&F University, Lin′an 311300, China)
关键词:
水稻表油菜素内酯基因表达
Keywords:
ricearsenicepibrassinolidegene expression
分类号:
S511.01
DOI:
doi:10.3969/j.issn.1000-4440.2018.06.010
文献标志码:
A
摘要:
以砷耐受性中等的籼稻品种93-11为材料,通过营养液水培,生理指标测定和基因表达分析等方法,研究了表油菜素内酯在缓解水稻亚砷酸盐毒害中的作用。结果表明,外施表油菜素内酯能有效促进受砷毒害水稻幼苗的生长,降低水稻根系的砷积累量,减少砷胁迫对根系细胞膜透性的影响,降低脯氨酸和非蛋白巯基化合物含量以及叶片中H2O2和O2·-等活性氧自由基的含量。通过定量表达分析发现,外施表油菜素内酯可降低水稻根系中亚砷酸盐和砷酸盐吸收相关基因的表达,但显著提高了砷酸还原酶基因的表达。说明外施表油菜素内酯可在一定程度上缓解砷对水稻的毒害作用。
Abstract:
Using 93-11, an indica rice cultivar with moderate arsenite (AsIII) tolerance as material, the potential role of external epibrassinolide (EBR) in regulation of AsIII tolerance in rice was investigated, using combinations of hydroponic culture, physiological indices measurements, and gene expression analysis. The results showed that compared with the addition of AsIII alone, supplementation of external EBR when seedlings being exposed to AsIII, the growth and cell membrane permeability of seedlings were extensively recovered, in the meantime, the accumulation of arsenic in rice seedlings was decreased. In addition, it was observed that after addition of EBR, the contents of proline, non-thiol protein, reactive oxygen species including H2O2 and O2·- were extensively decreased. Real-time RT-PCR revealed that after supplementation of external EBR under AsIII stress, the expression level of genes involved in arsenite and arsenate uptake and translocation were strongly repressed, while the expression of arsenate reductase was markedly induced. In conclusion, the supplementation of external EBR plays a positive role in alleviating AsIII stress in rice.

参考文献/References:

[1]JOHNSON B L, DEROSA C T. Chemical mixtures released from hazardous waste sites: Implications for health risk assessment[J]. Toxicology, 1995, 105: 145-156.
[2]LINDSAY E R, MAATHUIS F J M. New molecular mechanisms to reduce arsenic in crops[J]. Trends in Plant Science, 2017, 22(12): 1016-1026.
[3]LIU W J, ZHU Y G, HU Y, et al. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environmental Science and Technology, 2006, 40: 5730-5736.
[4]LIU W J, ZHU Y G, SMITH F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture[J]. Journal of Experimental Botany, 2004, 55: 1707-1713.
[5]ABEDIN M D J, CRESSER M S, MEHARG A A, et al. Arsenic accumulation and metabolism in rice (Oryza sativa L.)[J]. Environmental Science and Technology, 2002, 36: 962-968.
[6]SMITH E, JUHASZ A L, WEBER J. Arsenic uptake and speciation in vegetables grown under greenhouse conditions[J]. Environmental Geochemistry and Health, 2009, 31: 125-132.
[7]ARSLAN B, DJAMGOZ M B A, AKN E. ARSENIC: a review on exposure pathways, accumulation, mobility and transmission into the human food chain[J]. Reviews of Environmental Contamination and Toxicology, 2017, 243: 27-51.
[8]王钊,崔江慧,陈正,等. 淹水-控温模式下砷污染水稻土溶液中砷形态的变化[J]. 应用生态学报, 2013, 24(5): 1415-1422.
[9]MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931-9935.
[10]GUO W, HOU Y L, WANG S G, et al. Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture[J]. Plant and Soil, 2005, 272:173-181.
[11]CHEN Y, HAN Y H, CAO Y, et al. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice[J]. Frontiers in Plant Science, 2017, 8: 268.
[12]ABBAS G, MURTAZA B, BIBI I, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects[J]. International Journal of Environmental Research and Public Health, 2018, 15: 59.
[13]LI N, WANG J, SONG W Y. Arsenic uptake and translocation in plants[J]. Plant Cell and Physiology, 2016, 57(1): 4-13.
[14]CHEN Y, SUN S K, TANG Z, et al. The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice[J]. Journal of Experimental Botany, 2017, 68(11): 3007-3016.
[15]MOSA K A, KUMAR K, CHHIKARA S, et al. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants[J]. Transgenic Research, 2012, 21(6): 1265-1277.
[16]ZHAO F J, AGO Y, MITANI N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytologist, 2010, 186: 392-399.
[17]AWASTHI S, CHAUHAN R, SRIVASTAVA S, et al. The journey of arsenic from soil to grain in rice[J]. Frontiers in Plant Science, 2017, 8: 1007.
[18]祁永斌,杨卫兵,叶胜海,等. 水稻双剑叶突变体的表型、遗传分析及BR应答[J]. 核农学报, 2012, 26(6): 847-852.
[19]郑洁,工磊. 油菜素内酝在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1): 52-58.
[20]ALI B, HASAN S A, HAYAT S, et al. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigrra radiata L. Wilczek)[J]. Environmental and Experimental Botany, 2008, 62(2): 153-159.
[21]BAJGUZ A. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures underheavy metals stress[J]. Environmental and Experimental Botany, 2010, 68(2): 175-179.
[22]HWANG O J, BACK K. Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants[J]. Journal of Pineal Research, 2018, 65(2): e12495.
[23]KANG Y Y, GUO S R, LI J, et al. Effect of root applied 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativus L.) seedlings under hypoxia[J]. Plant Growth Regulation, 2009, 57: 259-269.
[24]HAUBRICK L L, ASSMANN S M. Brassinosteroids and plant function: some clues, more puzzles[J]. Plant Cell and Environment, 2006, 29: 446-457.
[25]华智锐,李小玲.油菜素内酯对小麦幼苗抗旱性的诱导效应[J].江苏农业科学,2017,45(1):62-65.
[26]尚宏芹,刘兴坦. 表油菜素内酯对汞胁迫下小麦幼苗抗氧化系统的影响[J]. 核农学报, 2016, 11(30): 2258-2264.
[27]孙德权,郭启高,胡玉林,等. 改良Trizol法提取香蕉叶片总RNA[J]. 广东农业科学, 2009(5): 162-164.
[28]李元元,曹清河. 油菜素内酯参与调控植物生长发育与抗逆性的机制及其育种应用研究[J]. 中国农业科技导报, 2015, 17(2): 25-32.
[29]李程,梁宝魁,王晓峰. 油菜素内酯提高蔬菜作物抗逆性的研究进展[J]. 中国蔬菜, 2015(11): 12-18.
[30]李钱峰,鲁军,余佳雯,等. 油菜素内酯与脱落酸互作调控植物生长与抗逆的分子机制研究进展[J]. 植物生理学报, 2018, 54(3): 370-378.
[31]赵方杰. 水稻砷的吸收机理及阻控对策[J]. 植物生理学报,2014, 50(5): 569-576.
[32]徐鼎,刘艳丽,杜克兵,等. 砷对植物生长的影响及抗氧化系统响应机制研究进展[J]. 湖北林业科技, 2014, 43(1): 8-15.
[33]刘锦嫦,熊双莲,马烁,等. 硒砷交互作用对水稻幼苗生理特性及砷硒累积的影响[J]. 农业环境科学学报,2018, 37(3): 423-430.
[34]向地英,邸葆,张钢,等. 镉胁迫对黄栌叶片电阻抗参数及相对电导率的影响[J]. 河北农业大学学报, 2014, 37(2): 58-64.
[35]彭玲,贾芬,田小平,等. 硒对油菜根尖镉胁迫的缓解作用[J]. 环境科学学报,2015, 35(8): 2597-2604.
[36]郭晖,王妞,张家洋. 土壤重金属胁迫下3种观赏植物生理抗性[J]. 西北林学院学报, 2017, 32(3): 62-66, 70.
[37]史梦梦,王玉泉,郑兴卫. 禾本科响应非生物胁迫研究进展[J]. 山西农业科学, 2018, 46(2): 309-312.
[38]赵天宏,孙加伟,付宇. 逆境胁迫下植物活性氧代谢及外源调控机理的研究进展[J]. 作物杂志, 2008(3): 10-13.
[39]王嘉玥,刘欣萍,吴航枫,等. 镉胁迫对旱柳植株活性氧含量的影响[J]. 现代农业科技, 2016(15): 191-193.
[40]王凤茹,王志勇. 油菜素内酯信号转导的研究进展[J]. 华北农学报, 2008, 23(S2): 29-39.
[41]朱虹,祖元刚,王文杰,等. 逆境胁迫条件下脯氨酸对植物生长的影响[J]. 东北林业大学学报, 2009, 37(4): 86-89.
[42]张述义,邵嘉鸣,李新凤,等. 水分胁迫对小麦芽和根中脯氨酸含量及电导率的影响[J]. 干旱地区农业研究, 2013, 31(3): 150-154.
[43]胡朝华,张蕾,朱端卫. 植物螯合肽的生物合成与解毒机制及在重金属修复中的应用前景[J]. 华中农业大学学报, 2006, 25(5): 575-580.
[44]ABEDIN M J, FEIDMANN J, MEHARG A A. Uptake kinetics of arsenic species in rice plants[J]. Plant Physiology, 2002, 128(3) : 1120-1128.
[45]耿安静,李汉敏,王旭,等. 水稻砷吸收代谢的相关研究进展[J]. 江西农业学报, 2017, 29(7): 18-24.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]史高玲,周东美,余向阳,等.水稻和小麦累积镉和砷的机制与阻控对策[J].江苏农业学报,2021,(05):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
 SHI Gao-ling,ZHOU Dong-mei,YU Xiang-yang,et al.Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J].,2021,(06):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]

备注/Memo

备注/Memo:
收稿日期:2018-08-09 基金项目:国家自然科学基金面上项目(31471431);国家级大学生创新创业训练计划项目(2013200068);浙江省自然科学基金重点项目(LZ19B070001);浙江农林大学学生科研训练项目(2013200037) 作者简介:练旺民(1996-),男,浙江丽水人,本科,研究方向为作物逆境生物学。(E-mail)979363065@qq.com。徐薇为共同第一作者。 通讯作者:刘庆坡,(E-mail)liuqp@zafu.edu.cn
更新日期/Last Update: 2018-12-28