参考文献/References:
[1]田翠. 生菜三大病害的发生与防治[J]. 农村新技术,2014(10),18-19.
[2]曹入尹,陈云浩,黄文江,等. 面向作物病害识别的高光谱波谱库设计与开发[J]. 自然灾害学报,2008,17(6):73-76.
[3]李子艺,王振锡,岳俊,等.基于BP神经网络的高光谱果树树种识别研究[J].江苏农业科学,2016,44(5):410-414.
[4]杨赛,朱启兵,黄敏. 基于联合偏度的高光谱图像波段选择对玉米种子分类研究[J]. 光谱学与光谱分析,2017,37(3):990-996.
[5]岳学军,全东平,洪添胜,等. 不同生长期柑橘叶片磷含量的高光谱预测模型[J]. 农业工程学报,2015,31(8):207-213.
[6]曹文涛,康日斐,王集宁,等. 基于高光谱遥感的土壤氯化钠含量监测[J]. 江苏农业学报,2016,32(4):817-823.
[7]BRAVO C, MOSHOU D, WEST J, et al. Early disease detection in wheat fields using spectral reflectance[J]. Biosystems Engineering, 2003, 84(2):137-145.
[8]王斌,薛建新,张淑娟. 基于高光谱成像技术的腐烂、病害梨枣检测[J]. 农业机械学报,2013,44(1):205-209.
[9]谭峰,马晓丹.基于叶片的植物病虫害识别方法[J].农机化研究,2009,31(6):41-43.
[10]ZHANG S W,SHANG Y J,WANG L. Plant disease recognition based on plant leaf image[J]. Journal of Animal & Plant sciences,2015,25(3):42-45.
[11]孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215.
[12]JUNCHENG M,KEMING D, LINGXIAN Z,et al. A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing[J]. Computers and Electronics in Agriculture,2017(142):110-117.
[13]朱文静,毛罕平,周莹,等. 基于高光谱图像技术的番茄叶片氮素营养诊断[J]. 江苏大学学报(自然科学版),2014,35(3):290-294.
[14]郭志明,黄文倩,彭彦昆,等. 高光谱图像感兴趣区域对苹果糖度模型的影响[J]. 现代食品科技,2014,30(8):59-63,75.
[15]孙林,陈丽娟. 植被叶片生化组分的光谱相应特征分析[J]. 光谱学与光谱分析,2010,30(11):3025-3031
[16]ACHARYA D, RANI A, AGARWAL S, et al. Application of adaptive Savitzky-Golay filter for EEG signal processing[J]. Perspectives in Science, 2016, 8:677-679.
[17]孙俊,丛孙丽,毛罕平,等. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型[J]. 农业工程学报,2017,33(5):178-184.
[18]RAJATHIAGAM B,MURALI M. Edge detection using G-lets based on matrix factorization by group representations[J]. Pattern Recognition,2017(67):1-15.
[19]庄哲民,章聪友,杨金耀,等. 基于灰度特征和自适应阈值的虚拟背景提取研究[J]. 电子与信息学报,2015,37(2):346-352.
[20]YINGYING Y,ZHENZHOU A,HONG W. Adaptive Targets-detecting Algorithm based on LBP and Background Modeling under Complex Scenes[J]. Procedia Engineering,2011,15:2789-2494.
[21]李春利,沈鲁娟. 基于改进LBP算子的纹理图像分类方法[J]. 计算机工程与设计,2016(1):232-236.
[22]韩丁,武佩,张强,等. 基于颜色矩的典型草原牧草特征提取与图像识别[J]. 农业工程学报,2016,32(23):168-175.
[23]HONORIUS G,LUCIAN M,RAZVAN A. Increment and decremental SVM for Regression[J]. International Journal of Computers Communications & Control,2016(11):195-202.
[24]马允,王晓东,富显祖. 基于GA-SVR模型的无参考立体图像质量评价[J]. 计算机工程,2017,43(5):234-239.
[25]张艳,孟庆龙,尚静,等. 新型图像技术在农作物病害监测预警中的应用与展望[J]. 激光技术,2017,38(12):7-13.
[26]冯雪冰. 基于优化SVM的列车转向架故障挖掘模型仿真[J]. 计算机仿真,2015(10):182-185.
[27]熊宁,张魏,黄金海,等. 基于约束松弛变量策略的中心校正内点法[J]. 电力系统保护与控制,2012,40(14):20-25.
相似文献/References:
[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(06):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(06):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[3]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(06):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[4]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(06):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
[5]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(06):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[6]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(06):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[7]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(06):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[8]潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报,2022,38(06):1550.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
PAN Yue,CAO Hong-xin,QI Jia-guo,et al.Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining[J].,2022,38(06):1550.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
[9]樊泳灼,李新国.湖滨绿洲棕漠土有机碳含量高光谱估算[J].江苏农业学报,2023,(06):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
FAN Yong-zhuo,LI Xin-guo.Hyperspectral prediction of organic carbon content of brown desert soil in the lakeside oasis[J].,2023,(06):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
[10]郑智康,常庆瑞,符欣彤,等.基于变换光谱与光谱指数的夏玉米叶片含水率高光谱估算[J].江苏农业学报,2023,(09):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]
ZHENG Zhi-kang,CHANG Qing-rui,FU Xin-tong,et al.Hyperspectral estimation of leaf water content of summer maize based on transformed spectrum and spectral index[J].,2023,(06):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]