[1]仇逊超.红松仁脂肪的近红外光谱定量检测[J].江苏农业学报,2018,(03):692-698.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
 QIU Xun-chao.Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy[J].,2018,(03):692-698.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
点击复制

红松仁脂肪的近红外光谱定量检测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年03期
页码:
692-698
栏目:
加工贮藏·质量安全
出版日期:
2018-06-25

文章信息/Info

Title:
Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy
作者:
仇逊超
(哈尔滨金融学院计算机系,黑龙江哈尔滨150030)
Author(s):
QIU Xun-chao
(Department of Computer Engineering, Harbin Finance University, Harbin 150030, China)
关键词:
近红外光谱红松仁脂肪定量检测
Keywords:
near infrared spectroscopypeeled Korean pine seedfatquantitative detection
分类号:
TS255.6
DOI:
doi:10.3969/j.issn.1000-4440.2018.03.031
文献标志码:
A
摘要:
为实现红松仁脂肪无损、简便检测,利用近红外光谱分析技术对红松仁脂肪进行定量分析,用偏最小二乘法构建去壳红松仁脂肪定量分析模型,采用多种预处理方法优化模型,并且利用间隔偏最小二乘法、反向间隔偏最小二乘法、无信息变量消除法进行特征波段的筛选。结果表明,红松仁光谱经一阶导数预处理后建立的模型最佳;波段优选可以提升模型质量,其中反向间隔偏最小二乘法的筛选结果最佳,其松仁脂肪模型校正集相关系数为0.911 4,验证集相关系数为0.882 0,验证集均方根误差为0.646 8。可见,经过优化后,模型的预测性能较好,实现了去壳红松仁脂肪的快速、无损检测。
Abstract:
In order to explore a nondestructive and simple method to test the fat in peeled Korean pine seeds, near infrared spectroscopy was applied for the quantitative analysis of the fat. Partial least squares (PLS) was used to establish the quantitative analysis models of the fat in peeled Korean pine seeds. Various pretreatment methods were used to optimize the models. Interval partial least squares (iPLS), backward interval partial least squares (BiPLS) and uninformative variables elimination (UVE) were used to select characteristic bands. The results showed that, for the peeled Korean pine seeds, the model established after first derivative preprocessing had the optimal performance. The models could be promoted by the bands selection and BiPLS was the optimization. The correlation coefficient of calibration subset of the fat models of peeled Korean pine seeds was 0.911 4 and the correlation coefficient of predication subset was 0.882 0. The root-mean-square error of validation subset was 0.646 8. It was concluded that the model prediction performance was good and fast after optimizing, and nondestructive inspection of fat in Korean pine seeds was realized.

参考文献/References:

[1]于俊林,车喜泉,常纪庆. 松仁的化学成分及功效[J].人参研究,2001,13(1):25-27.
[2]李鹏霞,王炜,梁丽松,等. 不同贮藏温度对不同状态松籽种仁脂肪酸氧化的影响[J].上海农业学报,2009,25(1):23-26.
[3]廖敦军,蒋蘋. 油茶籽脂肪酸成分含量与高光谱反射率的相关性[J].湖南农业大学学报(自然科学版),2013,39(4):445-448.
[4]AERNOUTS B,POLISHIN E,LAMMERTYN J,et al. Application of near infrared reflectance (NIR) spectroscopy to identify the quality of milk[J].Journal of Dairy Science,2011,94(11):5315.
[5]孙晓明,卢凌,张佳程,等. 牛肉化学成分的近红外光谱检测方法的研究[J].光谱学与光谱分析,2011,2(31):379-383.
[6]张中卫,温志渝,曾甜玲,等. 微型近红外光纤光谱仪用于奶粉中蛋白质脂肪的定量检测研究[J].光谱学与光谱分析,2013,7(33):1796-1800.
[7]郝中诚,彭云发,张宏,等. 基于近红外光谱的南疆温185核桃水分无损检测的研究[J].安徽农业科学,2014,42(21):7191-7193,7233.
[8]刘洁,李小昱,李培武,等. 基于近红外光谱的板栗水分检测方法[J].农业工程学报,2010,26(2):338-341.
[9]傅谊,张拥军,陈华才,等. 基于偏最小二乘法的板栗近红外光谱分析模型的建立[J].食品科技,2012(5):42-45.
[10]仇逊超,曹军. 近红外光谱波段优化在东北松子蛋白质定量检测中的应用[J].现代食品科技,2016,32(11):303-309.
[11]仇逊超,曹军. 便携式近红外光谱仪检测红松籽水分含量的研究[J].东北林业大学学报,2016,44(12):15-20,30.
[12]MACHO S, IUSA R, CALLAO M P, et al. Monitoring ethylene content in heterophasic co-polymers by near-infrared spectroscopy standardization of the calibration model[J]. Amal Chim Acta,2001,445(2):213-220.
[13]李晓云,王加华,黄亚伟. 便携式近红外仪检测牛奶中脂肪、蛋白质及干物质含量[J].光谱学与光谱分析,2011,3(31):665-668.
[14]王培培,张德全,陈丽,等. 近红外光谱法预测羊肉化学成分的研究[J].核农学报,2012,26(3):500-504.
[15]张初,刘飞,孔汶汶,等. 利用近红外高光谱图像技术快速鉴别西瓜种子品种[J].农业工程学报,2013,29(20):270-276.
[16]CHEN H Z,TAO P, CHEN J M, et al. Wav-eband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(1): 139-146.
[17]PARK B, ABBOTT J A, LEE K J, et al. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and Gala apples[J].Tran-sactions of the ASAE,2003, 46(6):1721-1731.
[18]HE K X, CHENG H, DU W L, et al. Online updating of NIR model and its industrial application via adaptive wavelength selection and local regression strategy[J].Chemometrics and Intelligent Laboratory Systems,2014, 134(8): 79-88.

相似文献/References:

[1]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
 ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(03):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[2]彭雅玲,邱雪,张海红,等.近红外光谱技术检测灵武长枣果肉硬度和贮藏时间[J].江苏农业学报,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
 PENG Ya-ling,QIU Xue,ZHANG Hai-hong,et al.Near-infrared spectroscopy for the determination of hardness and storage time of jujube fruit[J].,2019,(03):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
[3]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
 ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(03):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[4]曲歌,陈争光,张庆华.基于无信息变量消除法的水稻种子发芽率测定[J].江苏农业学报,2019,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
 QU Ge,CHEN Zheng-guang,ZHANG Qing-hua.Study on germination rate of rice seed based on uninformation variable elimination method[J].,2019,(03):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
[5]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
 SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(03):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[6]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
 FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(03):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
[7]谢文涌,柴琴琴,林旎,等.基于Stacking集成学习的马兜铃酸及其类似物鉴别[J].江苏农业学报,2021,(02):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
 XIE Wen-yong,CHAI Qin-qin,LIN Ni,et al.Discrimination of aristolochic acid and its analogues based on stacking ensemble learning[J].,2021,(03):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
[8]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
 SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(03):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
[9]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
 QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(03):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]

备注/Memo

备注/Memo:
收稿日期:2017-09-22 基金项目:黑龙江省省属高等学校基本科研业务费基础研究项目(青年学术骨干研究项目)(2017-KYYWF-0089) 作者简介:仇逊超(1986-),女, 黑龙江哈尔滨人,博士,讲师,主要从事农林产品无损检测、农林业机械化工程研究。(E-mail)ldqiuxunchao@126.com
更新日期/Last Update: 2018-07-04