参考文献/References:
[1]于俊林,车喜泉,常纪庆. 松仁的化学成分及功效[J].人参研究,2001,13(1):25-27.
[2]李鹏霞,王炜,梁丽松,等. 不同贮藏温度对不同状态松籽种仁脂肪酸氧化的影响[J].上海农业学报,2009,25(1):23-26.
[3]廖敦军,蒋蘋. 油茶籽脂肪酸成分含量与高光谱反射率的相关性[J].湖南农业大学学报(自然科学版),2013,39(4):445-448.
[4]AERNOUTS B,POLISHIN E,LAMMERTYN J,et al. Application of near infrared reflectance (NIR) spectroscopy to identify the quality of milk[J].Journal of Dairy Science,2011,94(11):5315.
[5]孙晓明,卢凌,张佳程,等. 牛肉化学成分的近红外光谱检测方法的研究[J].光谱学与光谱分析,2011,2(31):379-383.
[6]张中卫,温志渝,曾甜玲,等. 微型近红外光纤光谱仪用于奶粉中蛋白质脂肪的定量检测研究[J].光谱学与光谱分析,2013,7(33):1796-1800.
[7]郝中诚,彭云发,张宏,等. 基于近红外光谱的南疆温185核桃水分无损检测的研究[J].安徽农业科学,2014,42(21):7191-7193,7233.
[8]刘洁,李小昱,李培武,等. 基于近红外光谱的板栗水分检测方法[J].农业工程学报,2010,26(2):338-341.
[9]傅谊,张拥军,陈华才,等. 基于偏最小二乘法的板栗近红外光谱分析模型的建立[J].食品科技,2012(5):42-45.
[10]仇逊超,曹军. 近红外光谱波段优化在东北松子蛋白质定量检测中的应用[J].现代食品科技,2016,32(11):303-309.
[11]仇逊超,曹军. 便携式近红外光谱仪检测红松籽水分含量的研究[J].东北林业大学学报,2016,44(12):15-20,30.
[12]MACHO S, IUSA R, CALLAO M P, et al. Monitoring ethylene content in heterophasic co-polymers by near-infrared spectroscopy standardization of the calibration model[J]. Amal Chim Acta,2001,445(2):213-220.
[13]李晓云,王加华,黄亚伟. 便携式近红外仪检测牛奶中脂肪、蛋白质及干物质含量[J].光谱学与光谱分析,2011,3(31):665-668.
[14]王培培,张德全,陈丽,等. 近红外光谱法预测羊肉化学成分的研究[J].核农学报,2012,26(3):500-504.
[15]张初,刘飞,孔汶汶,等. 利用近红外高光谱图像技术快速鉴别西瓜种子品种[J].农业工程学报,2013,29(20):270-276.
[16]CHEN H Z,TAO P, CHEN J M, et al. Wav-eband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(1): 139-146.
[17]PARK B, ABBOTT J A, LEE K J, et al. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and Gala apples[J].Tran-sactions of the ASAE,2003, 46(6):1721-1731.
[18]HE K X, CHENG H, DU W L, et al. Online updating of NIR model and its industrial application via adaptive wavelength selection and local regression strategy[J].Chemometrics and Intelligent Laboratory Systems,2014, 134(8): 79-88.
相似文献/References:
[1]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(03):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[2]彭雅玲,邱雪,张海红,等.近红外光谱技术检测灵武长枣果肉硬度和贮藏时间[J].江苏农业学报,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
PENG Ya-ling,QIU Xue,ZHANG Hai-hong,et al.Near-infrared spectroscopy for the determination of hardness and storage time of jujube fruit[J].,2019,(03):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
[3]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(03):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[4]曲歌,陈争光,张庆华.基于无信息变量消除法的水稻种子发芽率测定[J].江苏农业学报,2019,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
QU Ge,CHEN Zheng-guang,ZHANG Qing-hua.Study on germination rate of rice seed based on uninformation variable elimination method[J].,2019,(03):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
[5]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(03):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[6]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(03):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
[7]谢文涌,柴琴琴,林旎,等.基于Stacking集成学习的马兜铃酸及其类似物鉴别[J].江苏农业学报,2021,(02):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
XIE Wen-yong,CHAI Qin-qin,LIN Ni,et al.Discrimination of aristolochic acid and its analogues based on stacking ensemble learning[J].,2021,(03):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
[8]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(03):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
[9]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(03):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]