[1]张丽丽,徐碧玉,刘菊华,等.MaASR1基因通过乙烯途径提高拟南芥抗旱性的作用机制[J].江苏农业学报,2018,(03):511-519.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
 ZHANG Li-li,XU Bi-yu,LIU Ju-hua,et al.The regulation mechanism of MaASR1 gene for improving the drought resistance of Arabidopsis by ethylene pathway[J].,2018,(03):511-519.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
点击复制

MaASR1基因通过乙烯途径提高拟南芥抗旱性的作用机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年03期
页码:
511-519
栏目:
遗传育种·生理生化
出版日期:
2018-06-25

文章信息/Info

Title:
The regulation mechanism of MaASR1 gene for improving the drought resistance of Arabidopsis by ethylene pathway
作者:
张丽丽1徐碧玉1刘菊华1贾彩红1张建斌1金志强12
(1.中国热带农业科学院热带生物技术研究所/农业部热带作物生物学与遗传资源利用重点实验室,海南海口571101;2.中国热带农业科学院海口实验站/海南省香蕉遗传育种改良重点实验室,海南海口570102)
Author(s):
ZHANG Li-li1XU Bi-yu1LIU Ju-hua1JIA Cai-hong1ZHANG Jian-bin1JIN Zhi-qiang12
(1.Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China;2.Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences/Hainan Provincial Key Laboratory for Genetics and Breeding of Banana, Haikou 570102, China)
关键词:
MaASR1基因基因芯片干旱胁迫乙烯实时荧光定量PCR
Keywords:
MaASR1 geneDNA microarraydrought stressethylenereal-time fluorescence quantitative PCR
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2018.03.005
文献标志码:
A
摘要:
香蕉MaASR1基因在植物响应逆境胁迫时发挥着重要作用,为了进一步研究MaASR1基因转入拟南芥后增强其抗旱性的分子机制,运用DNA芯片技术来筛选野生型拟南芥和转MaASR1基因拟南芥在不做任何胁迫处理和干旱胁迫处理条件下的差异基因。发现MaASR1提高拟南芥抗旱性与乙烯信号途径有密切的关系,对基因芯片中与乙烯途径相关的上调和下调大于2倍的差异基因进行了荧光定量PCR的验证。结果表明在干旱胁迫条件下,MaASR1的转入通过提高AtACS6和AtACO1的表达水平提高了拟南芥体内的乙烯合成水平。MaASR1的转入可以通过正调控乙烯反应和提高ERF类基因的表达来赋予植物抗旱性。以上结果为解析MaASR1基因作为转录因子通过乙烯途径提高植物抗旱能力的分子机制奠定了基础。
Abstract:
The MaASR1 gene of banana plays an important role in plant response to stress. In order to further study the molecular mechanism of drought resistance for MaASR1 gene in Arabidopsis thaliana, DNA microarray was used to screen the differentially expressed genes under natural and drought stress treatment in wild-type Arabidopsis thaliana and transgenic lines. It was found that MaASR1 could increase drought resistance in Arabidopsis thaliana and had a close relationship with ethylene signaling pathway. The genes related to ethylene pathway in the DNA microarray were verified by fluorescence quantitative PCR. The results showed that MaASR1 could improve the ethylene synthesis level in vivo by raising the expression level of ACS6 and ACO1 in Arabidopsis under the treatment of drought stress. The transfer of MaASR1 could confer drought resistance to Arabidopsis transgenic plants by positively regulating the ethylene response and increasing the gene expression of ERF. The above results lay the foundation for the analysis of the molecular mechanism of MaASR1 gene as a transcription factor to improve plant drought resistance through ethylene pathway.

参考文献/References:

[1]SHAO H B, CHU L Y, JALEEL C A, et al. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe[J]. Crit Rev Biotechnol, 2009, 29(2):131-151.
[2]FUJITA M, FUJITA Y, NOUTOSHI Y, et al. Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks[J]. Curr Opin Plant Biol, 2006, 9(4):436-442.
[3]VERMA V, RAVINDRAN P, KUMAR P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biol, 2016, 16:86.
[4]NGUYEN D, RIEU I, MARIANI C, et al. How plants handle multiple stresses:hormonal interactions underlying responses to abiotic stress and insect herbivory[J]. Plant Mol Biol, 2016, 91(6):727-740.
[5]张帆,李景富,姜景彬,等.外源水杨酸诱导对番茄幼苗抗冷性的影响[J].江苏农业科学,2017,45(3):91-94.
[6]孙验玲,徐远超,李帅,等. 玉米耐受盐胁迫的调控机理研究进展[J]. 山东农业科学,2016,48(11):157-163.
[7]MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture:challenges and perspectives[J]. Annual Review of Plant Biology, 2010, 61:443-462.
[8]LEE S C, LUAN S. ABA signal transduction at the crossroad of biotic and abiotic stress responses[J]. Plant Cell Environ, 2012, 35(1):53-60.
[9]DESIKAN R, LAST K, HARRETT-WILLIAMS R, et al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis[J]. Plant J, 2006, 47(6):907-916.
[10]VYSOTSKAYA L, WILKINSON S, DAVIES W J, et al. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants[J]. Plant Cell Environ, 2011, 34(5):729-737.
[11]JOO J, CHOI H J, LEE Y H, et al. A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11[J]. Planta, 2013, 238:155-170.
[12]REN M Y, FENG R J, SHI H R, et al. Expression patterns of members of the ethylene signaling-related gene families in response todehydration stresses in cassava[J]. PLoS One, 2017, 12(5):e0177621.
[13]WU L J, ZHANG Z J, ZHANG H W, et al. Transcriptional modulation of ethylene response factor protein jerf3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing[J]. Plant Physiol, 2008, 148(4):1953-1963.
[14]ZHANG H W, LIU W, WAN L Y, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Res, 2010, 19(5):809-818.
[15]VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J]. Curr Opin Biotech, 2005, 16(2):123-132.
[16]CHUANG H W, HARNRAK A, CHEN Y C, et al. A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses[J]. Biochem Bioph Res Co, 2010, 402(2):414-420.
[17]PAN Y, SEYMOUR G B, LU C G, et al. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato[J]. Plant Cell Rep, 2012, 31(2):349-360.
[18]SEO Y J, PARK J B, CHO Y J, et al. Overexpression of the ethylene-responsive factor gene brerf4 from brassica rapa increases tolerance to salt and drought in arabidopsis plants[J]. Mol Cells, 2010, 30(3):271-277.
[19]NOWAK K, WOJCIKOWSKA B, GAJ M D. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene related pathway[J]. Planta, 2015, 241:967-985.
[20]CHENG M C, LIAO P M, KUO W W, et al. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulatesabiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals[J]. Plant Physiol, 2013, 162(3):1566-1582.
[21]YU Y, YANG D, ZHOU S, et al. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and droughttolerance in rice[J]. Protoplasma, 2017, 254(1):401-408
[22]ZHANG H, ZHANG J, QUAN R, et al. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance[J]. Planta, 2013, 237:1443-1451.
[23]SONG C P, AGARWAL M, OHTA M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses[J]. Plant Cell, 2005, 17(8):2384-2396.
[24]YANG Z, TIAN L N, LATOSZEK-GREEN M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses[J]. Plant Mol Biol, 2005, 58(4):585-596.
[25]王 园.香蕉ASR基因抗逆功能的研究[D]. 海口:海南大学, 2010.
[26]苗红霞, 王 园, 徐碧玉, 等. 香蕉MaASR1基因的抗干旱作用[J]. 植物学报, 2014, 49 (5):548-559.
[27]张丽丽,香蕉转录因子基因-MaASR1提高拟南芥抗旱能力的调控机理研究[D]. 海口:海南大学, 2012.
[28]HUA J, MEYEROWITZ E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana[J]. Cell, 1998, 94(2):261-271.
[29]王中凤, 应铁进. 植物乙烯信号转导研究进展[J]. 植物生理与分子生物学学报, 2004, 30(6):601-608.
[30]BLEECKER A B, KENDE H. Ethylene:A gaseous signal molecule in plants[J]. Annu Rev Cell Dev Bi, 2000, 16:1-18.
[31]KLEE H J. Ethylene signal transduction. moving beyond Arabidopsis[J]. Plant Physiol, 2004, 135(2):660-667.
[32]GUO H W, ECKER J R. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor[J]. Cell, 2003, 115(6):667-677.
[33]QUAN R D, HU S J, ZHANG Z L, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnol J, 2010, 8(4):476-488.
[34]CAO Y F, SONG F M, GOODMAN R M, et al. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress[J]. J Plant Physiol, 2006, 163(11):1167-1178.
[35]ZHAO F Y, WANG Z L, ZHANG Q, et al. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa[J]. J Plant Res, 2006, 119(2):95-104.
[36]VERBRUGGEN N, HERMANS C. Proline accumulation in plants:a review[J]. Amino Acids, 2008, 35(4):753-759.
[37]ZHANG H W, LIU W, WAN L Y, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Res, 2010, 19(5):809-818.

相似文献/References:

[1]张丽丽,徐碧玉,刘菊华,等.香蕉MaASR1基因的生物信息学分析及原核表达[J].江苏农业学报,2017,(05):1129.[doi:doi:10.3969/j.issn.1000-4440.2017.05.026]
 ZHANG Li-li,XU Bi-yu,LIU Ju-hua,et al.Bioinformatics analysis and prokaryotic expression of MaASR1 gene from banana[J].,2017,(03):1129.[doi:doi:10.3969/j.issn.1000-4440.2017.05.026]

备注/Memo

备注/Memo:
收稿日期:2017-10-06 基金项目:海南省重大专项(HNGDpz201502);转基因生物新品种培育国家科技重大专项 (2016ZX08012005-007);现代农业产业技术体系建设专项(CARS-31) 作者简介:张丽丽(1984-),女,山东滨州人,博士,助理研究员,主要从事植物分子遗传学研究。(Tel)0898-66894828;(E-mail)zhanglili@itbb.org.cn 通讯作者:金志强,(E-mail)jinzhiqiang@itbb.org.cn
更新日期/Last Update: 2018-07-04