参考文献/References:
[1]杨惠杰,杨仁崔,李义珍,等.水稻茎秆性状与抗倒性的关系[J].福建农业学报, 2000,15(2): 1-7.
[2]王健,朱锦懋,林青青,等. 小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报, 2006, 5(1): 1-7.
[3]刘畅,李来庚. 水稻抗倒伏性状的分子机理研究进展[J].中国水稻科学, 2016, 30(2): 216-222.
[4]彭良才. 论中国生物能源发展的根本出路[J].华中农业大学学报(社科版), 2011, 92(2): 1-6.
[5]王艳婷,徐正丹,彭良才. 植物细胞壁沟槽结构与生物质利用研究展望[J].中国科学(生命科学), 2014, 44(8): 766-774.
[6]黄成,李来庚. 植物细胞壁研究与生物质改造利用[J].科学通报, 2016, 61(34): 3623-3629.
[7]WANG Y T, FAN C F, HU H Z, et al. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops[J].Biotechnology Advances, 2016, 34(5): 997-1017.
[8]KENNEDY D, NORMAN C. What don’t we know?[J].Science, 2005, 309: 75.
[9]NAGAO S, TAKAHASHI M. Trial construction of twelve linkage groups in japanese rice: (genetical studies on rice plant)[J].Journal of the Faculty of Agriculture Hokkaido Imperial University, 1963, 53: 72-130.
[10]KINOSHITA T. Report of committee on gene symbolization, nomencla-ture and linkage groups[J].Rice Genetics Newsletter, 1995, 12: 9-153.
[11]LI Y, QIAN Q, ZHOU Y, et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants[J].Plant Cell, 2003, 15: 2020-2031.
[12]TANAKA K, MURATA K, YAMAZAKI M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J].Plant Physiology, 2003, 133: 73-83.
[13]YAN C J, YAN S, ZENG X H, et al. Fine mapping and isolation of Bc7(t), allelic to OsCesA4[J].Journal of Genetics and Genomics, 2007, 34: 1019-1027.
[14]HIRANO K, KOTAKE T, KAMIHARA K, et al. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis[J].Planta, 2010, 232: 95-108.
[15]XIONG G Y, LI R, QIAN Q, et al. The rice dynamin-related protein DRP2B mediates membrane trafficking and thereby plays a critical role in secondary cell wall cellulose biosynthesis[J].Plant Journal, 2010, 64: 56-70.
[16]ZHOU Y H, LI S B, QIAN Q, et al. BC10, a DUF266-containing and golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.)[J].Plant Journal, 2009, 57: 446-462.
[17]ZHANG B, DENG L, QIAN Q, et al. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice[J].Plant Molecular Biology, 2009, 71: 509-524.
[18]ZHANG M, ZHANG B, QIAN Q, et al. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice[J].Plant Journal, 2010, 63: 312-328.
[19]LI X J, YANG Y, YAO J L, et al. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice[J].Plant Molecular Biology, 2009, 69: 685-697.
[20]ZHANG B C, LIU X L, QIAN Q, et al. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 5110-5115.
[21]ZHANG S J, SONG X Q, YU B S, et al. Identification of quantitative trait loci affecting hemicellulose characteristics based on cell wall composition in a wild and cultivated rice species[J].Molecular Plant, 2011, 5(1): 162-175.
[22]SONG X Q, LIU L F, JIANG Y J, et al. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants[J].Molecular Plant, 2013, 6: 768-780.
[23]WU B, ZHANG B, DAI Y, et al. Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice[J].Plant Physiology, 2012, 159: 1440-1452.
[24]LIU L, SHANG-GUAN K, ZHANG B C, et al. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils[J].Plos Genetics, 2013, 9: e1003704.
[25]GAO Y, HE C, ZHANG D, et al. Two trichome birefringence-like proteins mediate xylan acetylation, which is essential for leaf blight resistance in rice[J].Plant Physiology, 2017, 173: 470-481.
[26]ZHANG B, ZHANG L, LI F, et al. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase[J].Nature Plants, 2017, 3: 17017.
[27]YANG C H, LI D Y, LIU X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.)[J].BMC Plant Biology, 2014, 14: 158.
[28]YE Y, LIU B, ZHAO M, et al. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice[J].Plant Molecular Biology, 2015, 89: 385-401.
[29]张保才,周奕华. 植物细胞壁形成机制的新进展[J].中国科学, 2015, 45(6): 544-556.
[30]ZHANG M L, WEI F, GUO K, et al. A novel FC116/BC10 mutation distinctively causes alteration in the expression of the genes for cell wall polymer synthesis in rice[J].Frontiers in Plant Science,2016, 7(83):1366.
[31]LI F C, XIE G S, HUANG J F, et al. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice[J].Plant Biotechnology Journal, 2017,15(9): 1093-1104.
[32]CARDINAL A J, LEE M, MOORE K J. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize[J].Theoretical and Applied Genetics, 2003, 106: 866-874.
[33]KRAKOWSKY M D, LEE M, COORS J G. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue[J].Theoretical and Applied Genetics, 2005, 111: 337-346.
[34]KRAKOWSKY M D, LEE M, COORS J G. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue[J].Theoretical and Applied Genetics, 2006, 112: 717-726.
[35]BARRIERE Y, THOMAS J, DENOUE D. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838×F286[J].Plant Science, 2008, 175: 585-595.
[36]BARRIERE Y, MECHIN V, DENOUE D, et al. QTL for yield, earliness and cell wall digestibility traits in topcross experiments of F838×F286 RIL progeny[J].Crop Science, 2010, 50: 1761-1772.
[37]BARRIERE Y, MECHIN V, LEFEVRE B, et al. QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern iodent line[J].Theoretical and Applied Genetics, 2012, 125: 531-549.
[38]胡标林,孔祥礼,包劲松,等. 植物细胞壁性状的基因定位与克隆研究进展[J].江西农业学报, 2006, 18(2): 17-21.
[39]RANJAN P, YUN T, ZHANG X, et al. Bioinformatics-based identification of candidate genes from QTLs associated with cell wall traits in Populus[J].Bioenergy Research, 2010, 3: 172-182.
[40]VERMA V, WORLAND A J, SAVERS E J, et al. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat[J].Plant Breeding, 2005, 124: 234-241.
[41]张坤普,赵亮,海燕,等. 小麦白粉病成株抗性和抗倒伏性及穗下节长度的 QTL定位[J].作物学报, 2008, 34(8): 1350-1357.
[42]BURTON R A, WILSON S M, HRMOVA M, et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-b-D-glucans[J].Science, 2006, 311: 1940-1942.
[43]OKAWA T, HOBO T, YANO M, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J].Nature Communications, 2010, 1: 132-148.
[44]BARRIERE Y, LAPERCHE A, BARROT L, et al. QTL analysis of lignification and cell wall digestibility in the Bay-0 X Shahdara RIL progeny of Arabidopsis thaliana as a model system for forage plant[J].Plant Science, 2005, 168: 1235-1245.
[45]MOUILLE G, WITUCKA-WALL H, BRUYANT M P, et al. Quantitative trait loci analysis of primary cell wall composition in Arabidopsis[J]. Plant Physiology, 2006, 141: 1035-1044.
[46]LORENZANA R E, LEWIS M F, JUNG H J G, et al. Quantitative trait loci and trait correlationsfor maize stover cell wall compositionand glucose release for cellulosic ethanol[J].Crop Science, 2010, 50: 541-555.
[47]PENNING B W, SYKES R W, BABCOCK N C, et al. Genetic determinants for enzymatic digestion oflignocellulosic biomass are independent of those forlignin abundance in a maize recombinantinbred population[J].Plant Physiology, 2014, 165: 1475-1487.
[48]MARCOTULI I, HOUSTON K, WAUGH R, et al. Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats[J].Plos One, 2015, 10(7): e0132787.
[49]HASSAN A S, HOUSTON K, LAHNSTEIN J, et al. A Genome wide association study of arabinoxylan content in 2-row spring barley grain[J].Plos One, 2017, 12(8): e0182537.
[50]WILLIAMS P C, NORRIS K H. Near-infrared technology in the agricultural and food industries[M]. St Paul, MN:American Association of Cereal Chemists Inc, 1987.
[51]JIN S Y, CHEN H Z. Near-infrared analysis of the chemical composition of rice straw[J].Industrial Crops and Products, 2007, 26: 207-211.
[52]SOHN M, HIMMELSBACH D S, BARTON F E, et al. Near-infrared analysis of ground barley for use as a feedstock for fuel ethanol production[J].Applied Spectroscopy, 2007, 61: 1178-1183.
[53]POHL F, SENN T. A rapid and sensitive method for the evaluation of cereal grains in bioethanol production using near infrared reflectance spectroscopy[J].Bioresource Technology, 2011, 102: 2834-2841.
[54]DIGMAN M F, SHINNERS K J, CASLER M D, et al. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production[J].Bioresource Technology, 2010, 101: 5305-5314.
[55]BRUUN S, JENSENA J W, MAGIDA J, et al. Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy[J].Industrial Crops and Products, 2010, 31: 321-326.
[56]TEMPLETON D W, SLUITER A D, HAYWARD T K, et al. Assessing corn stover composition and sources of variability via NIRS[J].Cellulose, 2009, 16: 621-639.
[57]HUANG J F, XIA T, LI A, et al. A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus[J].Bioresource Technology, 2012, 121: 274-281.
[58]WU L M, LI M, HUANG J F, et al. A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum[J].Bioresource Technology, 2015, 177: 118-124.
[59]DECKER S R, BRUNECKY R, TUCKER M P, et al. High-throughput screening techniques for biomass conversion[J].Bioenergy Research, 2009, 2: 179-192.
[60]SANTORO N, CANTU S L, TORNQVIST C E, et al. A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility[J].Bioenergy Research, 2010, 3: 93-102.
[61]MUTTONI G, JOHNSON J M, SANTORO N, et al. A high-throughput core sampling device for the evaluation of maize stalk composition[J].Biotechnology for Biofuels, 2012, 5: 27.
[62]TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, populus trichocarpa (Torr & Gray)[J].Science, 2006, 313: 1596-1604.
[63]GOU J Y, WANG L J, CHEN S P, et al. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis[J].Cell Research, 2007, 17: 422-434.
[64]GUILLAUMIE S, MZID R, MCHIN V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco[J].Plant Molecular Biology, 2010, 72: 215-234.
[65]IHMELS J, BERGMANN S, BERMAN J, et al. Comparative gene expression analysis by differential clustering approach: application to the candida albicans transcription program[J].Plos Genetics, 2005, 1:1-14.
[66]AOKI K, OGATA Y, HIBATA D. Approaches for extracting practical information from gene coexpression networks in plant biology[J].Plant Cell Physiol, 2007, 48: 381-390.
[67]HARBISON S T, CARBONE M A, AYROLES J F, et al. Co-regulated transcriptional networks contribute to natural genetic variation in drosophila sleep[J].Nature Genetics, 2009, 41: 371-375.
[68]NAYAK R R, KEARNS M, SPIELMAN R S, et al. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions[J].Genome Research, 2009, 19: 1953-1962.
[69]PERSSON S, WEI H, MILNE J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 8633-8638.
[70]RUPRECHT C, PERSSON S. Co-expression of cell wall-related genes: new tools and insights[J].Frontiers in Plant Science, 2012, 3(3): 83.
[71]BROWN D M, ZEEF L A, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J].Plant Cell, 2005, 17: 2281-2295.
[72]GU Y, KAPLINSKY N, BRINGMANN M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 12866-12871.
[73]WANG L, XIE W, CHEN Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice[J].Plant Journal, 2010, 61: 752-766.
[74]WANG L Q, GUO K, LI Y, et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J].BMC Plant Biology, 2010, 10: 282-298.
[75]XIE G, YANG B, XU Z, et al. Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice[J].Plos One, 2013, 8(1): e50171.
[76]GUO K, ZOU W H, FENG Y Q, et al. An integrated genomic and metabolomic framework for cell wall biology in rice[J].BMC Genomics, 2014, 15: 596.
[77]ZHONG R, LEE C H, ZHOU J L, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J].Plant Cell, 2008, 20: 2763-2782.
[78]TAYLOR-TEEPLES M, LIN L, LUCAS M D, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J].Nature, 2015, 517: 571-575.
[79]FERNANDES A N, THOMAS L H, ALTANER C M, et al. Nanostructure of cellulose microfibrils in spruce wood[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 1195-1203.
[80]PATTATHIL S, AVCI U, BALDWIN D, et al. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodie[J].Plant Physiol, 2010, 153: 514-525.
[81]DING S Y, LIU Y S, ZENG Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J].Science, 2012, 338: 1055-1060.
[82]ZHONG R Q, LEE C, MCCARTHY R L, et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J].Plant Cell Physiology, 2011,52: 1856-1871.
[83]ENDLER A, KESTEN C, SCHNEIDER R, et al. A mechanism for sustained cellulose synthesis during salt stress[J].Cell, 2015, 162: 1353-1364.
[84]HUANG D, WANG S, ZHANG B, et al. A gibberellin-midiated DELLA-NAC signaling cascade regulates cellulose synthesis in rice[J].Plant Cell, 2015, 27: 1681-1696.
[85]徐宗昌,王萌,孔英珍. 油菜素内酯参与初生细胞壁代谢研究进展[J].安徽农业科学, 2016, 44(32): 1-5, 8.