[1]张娜,杨双,童非,等.铅污染对不同生境芦苇体内抗氧化酶系统的影响[J].江苏农业学报,2018,(02):333-339.[doi:doi:10.3969/j.issn.1000-4440.2018.02.016]
 ZHANG Na,YANG Shuang,TONG Fei,et al.The effects of Pb pollution on the antioxidant enzyme system of Phragmites australis (common reed) in different habits[J].,2018,(02):333-339.[doi:doi:10.3969/j.issn.1000-4440.2018.02.016]
点击复制

铅污染对不同生境芦苇体内抗氧化酶系统的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
333-339
栏目:
耕作栽培·资源环境
出版日期:
2018-04-25

文章信息/Info

Title:
The effects of Pb pollution on the antioxidant enzyme system of Phragmites australis (common reed) in different habits
作者:
张娜123杨双4童非1朱阳春1范如芹1卢信1刘丽珠1穆春生3张振华1
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.江苏省农业科学院,省部共建国家重点实验室培育基地江苏省食品质量安全重点实验室,江苏南京210014;3.东北师范大学草地科学研究所植被生态教育部重点实验室,吉林长春130024;吉林省延边朝鲜族自治州敦化市草原站,吉林敦化133700)
Author(s):
ZHANG Na123YANG Shuang4TONG Fei1ZHU Yang-chun1FAN Ru-qin1LU Xin1LIU Li-zhu1MU Chun-sheng3ZHANG Zhen-hua1
(1.Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Lab of Food Quality and Safety of Jiangsu Province——State Key Laboratory Breeding Base, Nanjing 210014, China;3.Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China;4.Grassland Station in Yanbian Korean Autonomous Prefecture, Dunhua 133700, China)
关键词:
芦苇淹水干旱抗氧化酶
Keywords:
Phragmites australisfloodingdroughtantioxidant enzyme
分类号:
X592
DOI:
doi:10.3969/j.issn.1000-4440.2018.02.016
文献标志码:
A
摘要:
为评估不同生境芦苇对铅污染的耐受或抵抗能力,采用盆栽试验模拟淹水和干旱生境,探究铅污染对不同生境芦苇体内蛋白质、丙二醛含量以及抗氧化酶活性的影响。结果表明,随着铅处理浓度增加和胁迫时间增加,芦苇体内丙二醛含量显著增加,但过氧化氢酶、超氧化物歧化酶和过氧化物酶活性也均显著增强。相同浓度铅处理的干旱生境芦苇体内超氧化物歧化酶和过氧化物酶活性均小于淹水生境芦苇。胁迫60 d,铅处理的两种生境芦苇体内过氧化氢酶、超氧化物歧化酶和过氧化物酶活性均显著增强;胁迫90 d,铅处理的两种生境芦苇体内的超氧化物歧化酶和过氧化物酶活性均显著大于对照。说明水生芦苇具有较强的抗氧化能力,超氧化物歧化酶和过氧化物酶在抵抗铅诱导的氧化胁迫中发挥重要作用。
Abstract:
o evaluate the tolerance or resistance of Phragmites australis (common reed) in different habits under Pb pollution, a pot experiment was conducted to explore the effect of Pb pollution on the contents of protein and malondialdehyde and activities of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) in plants under simulating drowned and dry environment. The results showed that content of malondialdehyde and the activities of antioxidant enzymes in reeds increased along with increase of Pb concentration and its stress period. The activities of peroxidase and superoxide dismutase in reeds were less in the dry environment than those in drowned environment at the same level of Pb concentration. After 60 days of Pb stress, the activities of catalase, peroxidase and superoxide dismutase in reeds increased significantly in both water environments. After 90 days of Pb stress, the activities of peroxidase and superoxide dismutase in reeds were significantly higher than those in control in both water environments. These results indicated that the flooded reeds had a stronger antioxidant capacity by increasing the activities of antioxidant enzymes (especially by peroxidase and superoxide dismutase).

参考文献/References:

[1]BLAYLOCK M J, HUANG J W. Phytoextraction of metals[C]//RASKIN I, ENSLEY B D. Phytoremediation of toxic metals: Using plants to clean up the environment. New York: John Wiley & Sons, Inc, 2000:53-70.
[2]SHARMA P, DUBEY R S. Lead toxicity in plants[J]. Brazilian J Plant Physiol, 2005, 17(1): 35-52.
[3]姜立娜,邵珠田,宋子文,等. 铅处理对菜用大黄种子萌发和幼苗生长的影响[J]. 江苏农业科学,2016,44(4):223-225.
[4]GODBOLD D, KETTNER C. Lead influences root growth and mineral nutrition of Picea abies seedlings[J]. J Plant Physiol, 1991, 139(1): 95-99.
[5]ISLAM E, LIU D, LI T, et al. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi[J]. J Hazard Mater, 2008, 154(1): 914-926.
[6]GOPAL R, RIZVI A H. Excess lead alters growth, metabolism and translocation of certain nutrients in radish[J]. Chemosphere, 2008, 70(9): 1539-1544.
[7]WANG J, LI W, ZHANG C, et al. Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei[J]. J Environ Sci, 2010, 22(12): 1916-1922.
[8]HU R, SUN K, SU X, et al. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina bunge and Chenopodium album L.[J]. J Hazard Mater, 2012, 205: 131-138.
[9]SMIRNOFF N. Antioxidants and reactive oxygen species in plants[M]. Wiley Online Library: John Wiley & Sons, 2005.
[10]BAISAK R, RANA D, ACHARYA P B, et al. Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress[J]. Plant Cell Physiol, 1994, 35(3): 489-495.
[11]ZHANG J, KIRKHAM M. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species[J]. Plant Cell Physiol, 1994, 35(5): 785-791.
[12]COMBA M E, BENAVIDES M P, TOMARO M L. Effect of salt stress on antioxidant defence system in soybean root nodules[J]. Funct Plant Biol, 1998, 25(6): 665-671.
[13]HERTWIG B, STREB P, FEIERABEND J. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions[J]. Plant Physiol, 1992, 100(3): 1547-1553.
[14]VERMA S, DUBEY R. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J]. Plant Sci, 2003, 164(4): 645-655.
[15]DAZY M, BRAUD E, COTELLE S, et al. Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica hedw[J]. Chemosphere, 2008, 73(3): 281-290.
[16]YE Z, BAKER A, WONG M, et al. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis cav. trin. Ex steudel[J]. Ann Bot, 1997, 80(3): 363-370.
[17]DEMIREZEN D, AKSOY A. Accumulation of heavy metals in Typha angustifolia L. and Potamogeton pectinatus L. living in sultan marsh (kayseri, turkey)[J]. Chemosphere, 2004, 56(7): 685-696.
[18]FEDIUC E, ERDEI L. Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia[J]. J Plant Physiol, 2002, 159(3): 265-271.
[19]李忠光,李江鸿,杜朝昆,等. 在单一提取系统中同时测定五种植物抗氧化酶[J]. 云南师范大学学报, 2002, 22(6): 44-48.
[20]李合生. 植物生理生化实验原理与技术[M]. 北京:高等教育出版社,2000.
[21]陶毅明. 镉铅胁迫下红树植物木榄生理生化特性, 抗氧化酶和相关蛋白的研究[D]. 桂林:广西师范大学, 2007.
[22]洪仁远,杨广笑,刘东华,等. 镉对小麦幼苗的生长和生理生化反应的影响[J]. 华北农学报, 1991, 6(3): 70-75.
[23]张雯. 镉胁迫对二穗短柄草生长及生理特性的响应 [D]. 兰州: 甘肃农业大学, 2014.
[24]ALSCHER R G, ERTURK N, HEATH L S. Role of superoxide dismutases (sods) in controlling oxidative stress in plants[J]. J Exp Bot, 2002, 53(372): 1331-1341.
[25]SLOOTEN L, CAPIAU K, VAN CAMP W, et al. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts[J]. Plant Physiol, 1995, 107(3): 737-750.
[26]MITTAL R, DUBEY R. Behaviour of peroxidases in rice: Changes in enzyme activity and isoforms in relation to salt tolerance[J]. Plant Physiol Biochem, 1991, 29(1): 31-40.

备注/Memo

备注/Memo:
收稿日期:2017-08-14 基金项目:中国博士后科学基金面上项目(2017M621670);国家重点基础研究计划项目(2015CB150801);江苏省农业科技自主创新基金项目[CX(16)1051];东北师范大学植被生态教育部重点实验室开放课题(130028712);江苏省农科院基本科研业务专项资金项目[ZX(17)2017];江苏省农业科学院科研基金项目(6111637) 作者简介:张娜(1987-),女,山东菏泽人,博士后,助理研究员,从事植物逆境生理生态学和污染修复研究。(Tel) 025-84391207;(E-mail)zhangn323@nenu.edu.cn 通讯作者:张振华,(Tel) 025-84391207;(E-mail)zhenhuaz70@hotmail.com; 共同通讯作者:穆春生,(E-mail)mucs821@nenu.edu.cn
更新日期/Last Update: 2018-05-04