[1]刘吉平,梁晨,赵亮.非生长季农田中孤立湿地土壤有机质及氮的空间分布规律[J].江苏农业学报,2017,(06):1288-1293.[doi:doi:10.3969/j.issn.1000-4440.2017.06.013]
 LIU Ji-ping,LIANG Chen,ZHAO Liang.Spatial distribution of soil organic matter and nitrogen in soil of isolated wetland in farmland during the non-growing season[J].,2017,(06):1288-1293.[doi:doi:10.3969/j.issn.1000-4440.2017.06.013]
点击复制

非生长季农田中孤立湿地土壤有机质及氮的空间分布规律()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年06期
页码:
1288-1293
栏目:
耕作栽培·资源环境
出版日期:
2017-12-30

文章信息/Info

Title:
Spatial distribution of soil organic matter and nitrogen in soil of isolated wetland in farmland during the non-growing season
作者:
刘吉平梁晨赵亮
(吉林师范大学旅游与地理科学学院,吉林四平136000) (吉林师范大学旅游与地理科学学院,吉林四平136000)
Author(s):
LIU Ji-pingLIANG ChenZHAO Liang
(College of Tourist and Geoscience Jilin Normal University, Siping 136000, China)
关键词:
农田中孤立湿地有机质
Keywords:
isolated wetland in farmlandsoil organic matternitrogen
分类号:
S153.6
DOI:
doi:10.3969/j.issn.1000-4440.2017.06.013
文献标志码:
A
摘要:
为探讨农田中孤立湿地的土壤养分特征,以自然孤立湿地为参考,基于野外采样与室内分析对2012年11月三江平原非生长季农田中孤立湿地不同植被带土壤有机质与氮的空间分布规律进行分析。结果表明,垂直方向上 0~60.0 cm,土壤有机质随土壤深度增加而逐渐减少,含量在 0.26%至11.06%之间;总氮含量除在小叶章群落中表层土壤最高,其他群落在土壤中层最高,含量在 1 202.2 mg/kg至6 139.4 mg/kg之间;硝态氮含量以中上层土壤较高,氨态氮除在小叶章群落明显富集于土壤上层,其他群落主要分布在土壤中部,二者含量分别为 0~49.51 mg/kg及 1.26~18.83 mg/kg。由湿地中心向边缘,有机质、硝态氮、氨态氮平均含量及碳氮比均呈先增后减的倒“V”字型规律,前两者最高值分别为6.76%与23.2 mg/kg,氨态氮、碳氮比最高值分别为9.92 mg/kg和26.14,总氮呈先增后减再增的“N”字型分布,最高值为3 417.5 mg/kg。农田中孤立湿地土壤有机质和氮的分布受水分条件、植物多样性、生物过程、季节变化及人类活动的影响,农田中孤立湿地有机质和氮的含量及其变幅均高于自然孤立湿地。
Abstract:
In order to discuss soil nutrient feature of isolated wetland in farmland, using natural isolated wetland as reference, spatial distribution of soil organic matter and nitrogen in soil of different vegetation zones of isolated wetland in farmland in Sanjiang Plain was analyzed based on outdoor investigation and indoor analysis during the non-growing season of November 2012. The results showed that soil organic matter content ranged from 0.26% to 11.06% and decreased with the increase of vertical depth from 0 cm to 60.0 cm. The content of total nitrogen in communities was highest in middle layer apart from that in Calamagrostis-angustifolia community and the content ranged from 1 202.20 mg/kg to 6 139.40 mg/kg. The content of nitrate nitrogen was higher in pelagic soil and ammonia nitrogen content of Calamagrostis-angustifolia community was higher in upper layer. The content of nitrate nitrogen and ammonia nitrogen ranged from 0 mg/kg to 49.51 mg/kg and from 1.26 mg/kg to 18.83 mg/kg, respectively. From center to the edge of wetland, the average content of soil organic matter, nitrate nitrogen, ammonia nitrogen and C/N presented inverted V type, and the maximum value was 6.76%, 23.20 mg/kg, 9.92 mg/kg and 26.14, respectively. Total nitrogen content was N type and its maximum value was 3 417.50 mg/kg. Distribution of soil organic matter and nitrogen in the wetland was affected by moisture, plant diversity, bioprocess, seasonal variation and human activity. The content and amplitude of soil organic matter and nitrogen of isolated wetland in farmland were all higher than those of natural isolated wetland.

参考文献/References:

[1]陆琪,马克明,张洁瑜,等.三江平原退化湿地和农田土壤养分的比较研究[J].生态与农村环境学报,2007,23(2):23-28.
[2]章芳,吴梦纤,王晓亮,等.新疆玛纳斯湿地土壤细菌生理类群数量变化及其与土壤环境的相关分析[J].江苏农业科学,2015,43(8):327-332.
[3]刘吉平,吕宪国,杨青,等.三江平原环型湿地土壤养分的空间分布规律[J].土壤学报,2006,43(2):247-255.
[4]宫超,宋长春,谭稳稳,等.三江平原沼泽湿地垦殖对土壤微生物学性质影响研究[J].生态环境学报,2015,24(6):972-977.
[5]肖烨,黄志刚,武海涛,等.三江平原典型湿地类型土壤微生物特征与土壤养分的研究[J].环境科学,2015,36(5):1842-1848.
[6]GRASSET C, ABRIL G, GUILLARD L, et al. Carbon emission along a eutrophication gradient in temperate riverine wetlands: effect of primary productivity and plant community composition[J]. Freshwater Biology, 2016, 61(9):1405-1420.
[7]DAS G A, SARKAR S, SINGH J, et al. Nitrogen dynamics of the aquatic system is an important driving force for efficient sewage purification in single pond natural treatment wetlands at East Kolkata Wetland[J]. Chemosphere, 2016, 164:576 -584.
[8]孔范龙,郗敏,吕宪国,等.三江平原环型湿地土壤溶解性有机碳的时空变化特征[J].土壤学报,2013,50(4):847-852.
[9]肖烨,黄志刚,武海涛,等.三江平原4种典型湿地土壤碳氮分布差异和微生物特征[J].应用生态学报,2014,25(10):2847-2854.
[10]王洋,刘景双,孙志高,等. 三江平原典型碟形湿地土壤氮素分布特征[J]. 土壤通报, 2011, 42(3):598-602.
[11]孙志高,刘景双,陈小兵.三江平原小叶章土壤中硝态氮和铵态氮的空间分布格局[J].水土保持通报,2009,29(3):66-72.
[12]WANG Y, LIU J S, DOU J X,et al. Seasonal characteristic of Carexlasiocarpa biomass and nutrientaccumulation in the typical wetland ofSanjiangPlain, China[J]. Journal of Forestry Research,2010,21(3):389-393.
[13]殷书柏,杨青,吕宪国.三江平原典型环型湿地土壤有机碳剖面分布及碳贮量[J].土壤通报,2006,37(4):659-661.
[14]孙志高,刘景双.三江平原典型小叶樟湿地土壤氮的垂直分布特征[J].土壤通报,2009,40(6):1342-1348.
[15]赵亮.三江平原孤立湿地土壤碳氮磷的空间结构和季节变化研究[D].四平:吉林师范大学,2013.
[16]王国栋, BETH, MIDDLETON,等. 农田开垦对三江平原湿地土壤种子库影响及湿地恢复潜力[J]. 生态学报, 2013, 33(1):205-213.
[17]陈建磊,谢文霞,崔育倩,等. SmartChem140全自动化学分析仪测定土壤全氮全磷的研究[J].分析科学学报,2016,32(1):84-88.
[18]陕红,张庆忠,张晓娟,等.保存、分析方法等因素对土壤中硝态氮测定的影响[J].分析测试学报,2013,32(12):1466-1471.
[19]吴迪,陈建平,徐慧慧.农田土壤水中氨氮测定问题讨论[J].环境科学与技术,2010(S2):499-501.
[20]窦晶鑫,刘景双,王洋,等.三江平原草甸湿地土壤有机碳矿化对C/N的响应[J].地理科学,2009,29(5):773-778.
[21]万忠梅,宋长春.三江平原不同类型湿地土壤酶活性及其与营养环境的关系[J].水土保持学报,2008,22(5):158-161.
[22]刘景双.湿地生态系统碳、氮、磷、硫生物地球化学过程[M].合肥:中国科学技术大学出版社,2013.
[23]杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志,2008,27(1):38-42.
[24]卢涛,马克明,倪宏伟,等.三江平原不同强度干扰下湿地植物群落的物种组成和多样性变化[J].生态学报,2008,28(5):1893-1900.
[25]孙志高,刘景双,于君宝.三江平原小叶章湿地土壤中碱解氮和全氮含量的季节变化特征[J].干旱区资源与环境,2009,23(8):145-149.

相似文献/References:

[1]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(06):786.[doi:10.3969/j.issn.100-4440.2016.04.012]

备注/Memo

备注/Memo:
收稿日期:2017-05-22 基金项目:国家自然科学基金项目(41071037),教育部新世纪优秀人才支持计划项目(NCET-12-0730);吉林师范大学研究生科研创新计划资助项目(研创新201633) 作者简介:刘吉平(1972- ),男,山东定陶人,博士,教授,主要从事湿地生态学研究。(E-mail)liujpjl@163.com
更新日期/Last Update: 2018-01-03