参考文献/References:
[1]STARKEY D E, WARD T J, AOKI T, et al. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity [J]. Fungal Genetics and Biology, 2007, 44(11): 1191-1204.
[2]陈士强,陈秀兰,张容,等.小麦赤零病抗性与株高的相关性研究[J].江苏农业科学,2015,43(12):144-147.
[3]DE ACKERMANN M D, KOHIL M M. Chemical control of Fusarium head blight of wheat [M]. //ALCONADA-MAGLIANO T M, CHULZE S N. Fusarium Head Blight in Latin America. Dordrecht: Springer Netherlands, 2013: 175-189.
[4]LIU N, FAN F, QIU D, et al. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum [J]. Fungal Genetics and Biology, 2013, 58: 42-52.
[5]SUN H Y, ZHU Y F, LIU Y Y, et al. Evaluation of tebuconazole for the management of Fusarium head blight in China [J]. Australasian Plant Pathology, 2014, 43(6): 631-638.
[6]DUAN Y, ZHANG X, GE C, et al. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum[J]. Scientific Reports, 2014, 4: 7094.
[7]HOU Y, LUO Q, CHEN C, et al. Application of tetra primer ARMS-PCR approach for detection of Fusarium graminearum genotypes with resistance to carbendazim[J]. Australasian Plant Pathology, 2013, 42(1): 73-78.
[8]BENSMIRA M, JIANG B, NSABIMANA C, et al. Effect of lavender and thyme incorporation in sunflower seed oil on its resistance to frying temperatures[J]. Food Research International, 2007, 40(3): 341-346.
[9]AKTHAR M S, DEGAGA B, AZAM T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review[J]. Issues in Biological Sciences and Pharmaceutical Research, 2014, 2(1): 1-7.
[10]LIANG D, LI F, FU Y, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells[J]. Inflammation, 2014, 37(1): 214-222.
[11]HORVATHOVA E, NAVAROVA J, GALOVA E, et al. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil[J]. Journal of Agricultural and Food Chemistry, 2014, 62(28): 6632-6639.
[12]NAVARRO D, DIAZ-MULA H M, GUILLEN F, et al. Reduction of nectarine decay caused by Rhizopus stolonifer, Botrytis cinerea and Penicillium digitatum with Aloe vera gel alone or with the addition of thymol[J]. International Journal of Food Microbiology, 2011, 151(2): 241-246.
[13]CASTILLO S, PEREZ -ALFONSO C O, MARTINEZ -ROMERO D, et al. The essential oils thymol and carvacrol applied in the packing lines avoid lemon spoilage and maintain quality during storage[J]. Food Control, 2014, 35(1): 132-136.
[14]GONZALEZ-AGUILAR G A, ANSORENA M R, VIACAVA G E, et al. Plant essential oils as antifungal treatments on the postharvest of fruit and vegetables[M] // ABYANEH M R, RAI M. Antifungal metabolites from plants. Berlin: Springer Berlin Heidelberg, 2013: 429-446.
[15]张静,冯岗,袁旭超,等. 百里香酚抑菌活性初探[J]. 中国农学通报, 2009, 25(21): 277-280.
[16]AHMAD A, KHAN A, AKHTAR F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2011, 30(1): 41-50.
[17]CHAUHAN A K, KANG S C. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model[J]. Research in Microbiology, 2014, 165(7): 559-565.
[18]DE LIRA MOTA K S, DE OLIVEIRA PEREIRA F, DE OLIVETRA W A, et al. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol[J]. Molecules, 2012, 17(12): 14418-14433.
[19]GAO T, ZHOU H, ZHOU W, et al. The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis[J]. Molecules, 2016, 21(6): 770.
[20]李小白,向林,罗洁,等. 转录组测序 (RNA-seq) 策略及其数据在分子标记开发上的应用[J]. 中国细胞生物学学报, 2013, 35(5): 720-726.
[21]GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652.
[22]CONESA A, GOTZ S, GARCIA -GOMEZ J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18): 3674-3676.
[23]TATUSOV R L, GALPERIN M Y, NATALE D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1): 33-36.
[24]KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(S1): 277-280.
[25]马养民,赵洁,周雪宁. 植物内生真菌抗植物病原真菌活性物质的研究[J]. 化学进展, 2010, 22(2): 440-448.
[26]IMMING P, SINNING C, MEYER A. Drugs, their targets and the nature and number of drug targets[J]. Nature Reviews Drug Discovery, 2006, 5(10): 821-834.
[27]许波,张伟强,冯晓曦,等. 转录组测序技术在玉米中的应用研究进展[J]. 玉米科学, 2014, 22(1): 67-72.
[28]UENO K, NAGANO M, SHIMIZU S, et al. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergo sterol[J]. Biochemical and Biophysical Research Communications, 2016, 475(4): 315-321.
[29]BURT S. Essential oils: their antibacterial properties and potential applications in foods——a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253.
[30]钟少枢,吴克刚,柴向华,等. 七种单离食用香料对食品腐败菌抑菌活性的研究[J]. 食品工业科技,2009(5):68-71.
[31]CHAVAN P S, TUPE S G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts[J]. Food Control, 2014, 46: 115-120.
[32]CHAUHAN A K, JAKHAR R, PAUL S, et al. Potentiation of macrophage activity by thymol through augmenting phagocytosis[J]. International Immunopharmacology, 2014, 18(2): 340-346.
[33]REES D C, JOHNSON E, LEWINSON O. ABC transporters: the power to change[J]. Nature Reviews Molecular Cell Biology, 2009, 10(3): 218-227.
[34]UENO K, NAGANO M, SHIMIZU S, et al. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol[J]. Biochemical and Biophysical Research Communications, 2016, 475(4): 315-321.