[1]娄丽娜,刘哲,许园园,等.萝卜与芜菁异源三倍体杂种的获得及鉴定[J].江苏农业学报,2017,(04):881-889.[doi:doi:10.3969/j.issn.1000-4440.2017.04.024]
 LOU Li-na,LIU Zhe,XU Yuan-yuan,et al.Production and identification of an allotriploid hybrid of radish (Raphanus sativus L.)× turnip (Brassica rapa L. spp. rapa)[J].,2017,(04):881-889.[doi:doi:10.3969/j.issn.1000-4440.2017.04.024]
点击复制

萝卜与芜菁异源三倍体杂种的获得及鉴定()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年04期
页码:
881-889
栏目:
园艺
出版日期:
2017-08-30

文章信息/Info

Title:
Production and identification of an allotriploid hybrid of radish (Raphanus sativus L.)× turnip (Brassica rapa L. spp. rapa)
作者:
娄丽娜刘哲许园园苏小俊
(江苏省农业科学院蔬菜研究所,江苏南京210014)
Author(s):
LOU Li-naLIU ZheXU Yuan-yuanSU Xiao-jun
(Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
萝卜芜菁属间杂交异源三倍体杂种
Keywords:
radishturnipintergeneric hybridizationallotriploid hybrid
分类号:
S631.1
DOI:
doi:10.3969/j.issn.1000-4440.2017.04.024
文献标志码:
A
摘要:
为了探讨萝卜和芜菁属间杂交的亲和性,以及为开展萝卜和芜菁远缘杂交育种提供参考,以7份不同类型的萝卜材料为母本,6份不同类型的芜菁材料为父本进行属间杂交,人工授粉过程中采用100 mg/L甘氨酸(Gly)、60 mg/L赤霉素(GA3)和5%氯化钠(NaCl)溶液涂抹柱头的方法,促进受精及子房和胚的发育,以涂抹清水为对照,然后用组织培养方法对杂种种子进行无菌苗培养。通过调查授粉后7 d、14 d及21 d的杂交结荚率及 7~21 d的结荚率差值,分析萝卜和芜菁属间杂交的亲和性;然后通过形态学和细胞学鉴定,确定杂种的真实性。结果表明:授粉后7 d,结荚率较高,随着授粉后时间的推移,结荚率迅速减少。不同杂交组合以及不同处理,对结荚率和结籽率的影响不同,组合R5×W4的结荚率保持最好,且结荚率最高;Gly处理对结荚率的保持效果较好,GA3处理获得种子的组合数量最多且结籽率最高。7个杂交组合获得74粒种子,出苗4株,经鉴定,在组合R9×W9上使用Gly处理,获得1株异源三倍体的属间杂种苗(3n=28),杂种高度不育,未获得萝卜和芜菁的双单倍体杂种后代。
Abstract:
To analyze the crossability of radish and turnip, the distant hybridization between seven types of radish and six types of turnip materials were made in this study. Gly (100 mg/L), GA3 (60 mg/L), and NaCl (5%) solutions were spread on stigmas to accelerate fertilization and improve development of ovaries and ovules. Water was used as control. At 7 d, 14 d, and 21 d after pollination, the pod setting rate and its difference between 7 d and 21 d were investigated. The pod setting rate was high at 7 d after pollination, and decreased over time. The pod and seed setting rates varied in cross combinations and treatments. Cross combination R5×W4-2 showed the highest pod setting rate and the smallest pod setting rate drop. The Gly treatment had better effect on maintaining the pod setting rate. GA3-treated cross combinations got the highest number of seeds and the highest seed setting rate. Four seedlings emerged from 74 seeds of 7 crosses. One allotriploid hybrid (3n=28) was identified as highly sterile from Gly-treated combination R9×W9-1. No dihaploid hybrid was produced.

参考文献/References:

[1]BANNEROT H, BOULIDARD I, CAUDERON Y, et al. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea[J]. Proc Eucarpia Meeting Cruciferae Crop Section, 1974, 25:52-54.
[2]BROWN G G, FORMANOVá N, JIN H, et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein wide multiple pentatricopeptide repeats[J]. The Plant Journal, 2003, 35(2): 262-272.
[3]PETERKA H, BUDAHN H, SCHRADER O, et al. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition[J]. Theoretical and Applied Genetics, 2004, 109(1): 30-41.
[4]潘大仁. 甘蓝型油菜与萝卜杂交产生的杂种BC2代株系抗线虫病分析[J]. 福建农业大学学报, 1999, 28(4): 402-406.
[5]HAGIMORI M, NAGAOKA M, KATO N, et al. Production and characterization of somatic hybrids between the Japanese radish and cauliflower[J]. Theoretical and Applied Genetics, 1992, 84:819-824.
[6]KARPECHENKO G D. Polyploid hybrids of Raphanus sativus L. × Brassica oleracea L.[J]. Molecular and General Genetics, 1928, 48(1): 1-85.
[7]DOLSTRA O. Synthesis and fertility of Brassicoraphanus and ways of transferring Raphanus characters to Brassica [J]. Agricultural Research Reports, 1982, 917:1-9.
[8]娄丽娜,刘哲,苏小俊. 萝卜与芸薹属物种间的远缘杂交研究进展[J]. 江西农业学报, 2015,27(9):21-27.
[9]MATSUZAWA Y, SARASHIMA M. Intergenetic hybridizarion of Eruca, Brassica and Raphanus[J]. Crusiferae Newsl, 1986, 11:17
[10]SARSHIMA M, MATSUZAWA Y, KIMURA T. Intergeneric hybridization between Brassica oleracea and Raphanus sativus by embryo culture[J]. Cruciferac Newsl, 1980, 10:25.
[11]GUPTA S K. Production of interspecific and intergeneric hybrids in Brassica and Raphanus[J]. Cruciferae Newslett Eucarpia, 1997, 19: 21-22.
[12]MCNAUGHTON I H. Synthesis and sterility of Raphanobrassica[J]. Euphytica, 1973, 22: 70-88.
[13]KARPECHENKO G D. Hybrids of ♀Raphanus sativus L.×♂Brassica oleracea L.[J]. Journal of Genetics, 1924, 14(3):375-396.
[14]RHEE W Y, CHO Y H, PAEK K Y. Seed formation and phenotypic expression of intra and inter-specific hybridific hybreds of Brassica and of interegneric hybrids obtained by crossing with Raphanus[J]. Journal of the Korean Society for Horticultural Science, 1997, 38: 353-360.
[15]WARWICK S I, SIMARD M J, LEGERE A, et al. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica raps L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) OE Schulz[J]. Theoretical and Applied Genetics, 2003, 107(3):528-539.
[16]PAULMANN W, RBBELEN G. Effective transfer of cytoplasmic male sterility from radish (Raphanus sativus L.) to rape (Brassica napus L.) [J]. Plant Breeding, 1988, 100(4): 299-309.
[17]VOSS A, SNOWDON RJ, LHS W, et al. Intergeneric transfer of nematode resistance from Raphanus sativus into the Brassica napus genome[J]. Acta Hort, 2000, 539:129-134.
[18]HONMA S H, HEECKT O. Investigations on F1 and F2 hybrids between Brassica oleraceae var. acephala and Raphanus sativus[J]. Euphytica, 1962, 11:177-180.
[19]HARBERD D J, MCARRITHUR E D. Meiotic analysis of some species and genus hybrids in the Brassiceae[M] // TSUNODA S, HINATA K, GOMEZ C C. Brassica crops and wild allies. Biology and breeding. Tokyo: Japan Sci So Press, 1980: 65-87.
[20]MIZUSHIMA U. Karyogenetic studies of species and genus hybrids in the tribe Brassiceae of Crucoferae[J]. Tohoku Journal of Agricultural Research, 1949, 1:1-14.
[21]LEE S S, WOO J G, SHIN H H. Obtaining intergeneric hybrid plant between Brassica campestris and Raphanus sativus through young ovule culture[J]. Korean Journal of Breeding, 1989, 21:52-57.
[22]LEE S S, CHOI W J, WOO J G. Development of a new vegetable crop in Brassicoraphanus by hybridization of Brassica campestris and Raphanus sativus[J]. Journal of the Korean Society for Horticultural Science, 2002, 43:693-698.
[23]KANEKO Y, MATSUZAWA Y, SARASHIMA M. Breeding of the chromosome addition lines of radish with single kale chromosome[J]. Japanese Journal of Breeding, 1987, 37(4):438-452.
[24]FUKUSHIMA E, 福岛,荣二. Cytogenetic studies on Brassica and Raphanus[J]. Journal of the Department of Agriculture Kyush Imperial University, 1945, 7: 281-396.
[25]TAKESHITA M, KATO M, OKUMASU S. Application of ovule culture to the production of intergeneric or interspecific hybrids in Brassica and Raphanus[J]. Japanese Journal of Genetics, 1980, 55(5):373-387.
[26]TOKUMASU S. The increase of seed fertility of Brassicoraphanus through cytological irregularity[J]. Euphytica, 1976, 25: 463-47.
[27]WANG Y P, SONNTAG K, RUDLOFF E, et al. Production and characterization of somatic hybrids between Brassica napus and Raphanus[J]. Plant Cell Tiss Organ Cult, 2006, 86: 279-283.
[28]SUN J L, LEE S S, BANG J W. Karyotype and genomic in situ hybridization pattern in Brassicoraphanus, an intergeneric hybrid between Brassica campestris ssp. Pekinensis and Raphanus sativus[J]. Plant Biotechnol Rep, 2012, 6:107-112.
[29]KOLTE S J, BORDOLOI D K, AWASTHI R P. The search for resistance to major diseases of rapeseed and mustard in India[C]//McGREGOR D I. Proceedings of the 8th international rapeseed congress, Saskatoon, Canada: Organizing Committee,1991: 219-225.
[30]LELIVELT C L C,KRENS F A.Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L.[J]. Theoretical and Applied Genetics, 1992,83:887-894.
[31]THIERFELDER A, HACKENBERG E, NICHTERLEIN K, et al. Development of nematode-resistant rapeseed genotypes via interspecic hybridization[C]//McGREGOR D I. Proceedings of the 8th international rapeseed congress, Saskatoon, Canada: Organizing Committee, 1991:269-273.
[32]LONG M H, XING G M, OKUBO H, et al. Cross compatibility between Brassicoraphanus (Brassica oleracea ×Raphanus sativus) and cruciferous crops, and rescuing the hybrid embryos through ovary and embryo culture[J]. Journal of the Faculty of Agriculture University,1992, 37: 29-39.
[33]徐学忠,胡靖锋,杨红丽 ,等. 抗根肿病大白菜新品种CCR11242的选育[J]. 山东农业科学,2015,47(5):19-22.
[34]OGURA H.Studies on the new male-sterility in Japanese radish,with special reference to the utilization of this sterility towards the practical raising of hybrid seeds[J]. Wm B Eerdmans, 1927, 116(3): 1446-1459.
[35]梅时勇,甘彩霞,崔磊,等. 一种萝卜与芜菁属间远缘杂交获得离体胚的方法: CN102210259A[P]. 2011-10-12.
[36]房相佑,饭田大助.萝卜与芸薹野生种间属间杂交的生产[J]. 谢国禄译. 育种科学,1997, 43(3): 223-228.
[37]LOU L, LOU Q, LI Z, et al. Production and characterization of intergeneric hybrids between turnip (Brassica rapa L. em Metza. Subsp. rapa) and radish (Raphanus sativus L.) [J]. Scientia Horticulturae, 2017, 220: 57-65.
[38]周芳菊. 芸薹属与萝卜属间杂种的获得及SSR分子鉴定[D]. 长沙:湖南农业大学,2006.
[39]孟金陵.芸薹属植物属间杂交不亲和性研究进展[J]. 中国油料,1987(4):71 -77.
[40]刘忠松. 油菜远缘杂交遗传育种研究进展[J].作物研究,1995,9(增刊):17-19.
[41]孙万仓,官春云,孟亚雄,等. 芸芥(Eruca sativa Mill)与芸薹属(Brassica L.) 3个油用种的属间杂交[J]. 作物学报,2005,31(1):36-42.
[42]MOHAMMAD A, SIKKA S M. Pseudogamy in Brassica[J]. Curr Sci, 1940,9:280-282.
[43]OLSSON G. Species crosses within the genus Brassica [J]. Hereditas, 1960,46(1/2):171-223.
[44]MACKAY G R. On the genetic status of maternals induced by pollination of Brassica oleracea with B. campestris L.[J]. Euphytica, 1972,21(1):71-77.
[45]EENINK A H. Matromorphy in Brassica oleracea L. V. studies on quantitative characters of matromorphic plants and their progeny[J]. Euphytica, 1974, 23(3): 725-736.

相似文献/References:

[1]许园园,刘哲,娄丽娜,等.基于 MCID 法的萝卜品种快速鉴定[J].江苏农业学报,2016,(06):1384.[doi:doi:10.3969/j.issn.1000-4440.2016.06.029]
 XU Yuan-yuan,LIU Zhe,LOU Li-na,et al.Rapid identification of radish varieties based on MCID method[J].,2016,(04):1384.[doi:doi:10.3969/j.issn.1000-4440.2016.06.029]
[2]李芳,徐良,魏美甜,等.萝卜 IRAP 技术体系建立与品种指纹图谱构建[J].江苏农业学报,2015,(01):143.[doi:10.3969/j.issn.1000-4440.2015.01.023]
 LI Fang,XU Liang,WEI Mei-tian,et al.Establishment of inter-retrotransposon amplified polymorphism(IRAP) reaction system and construction of cultivar fingerprint in radish (Raphanus sativus L.)[J].,2015,(04):143.[doi:10.3969/j.issn.1000-4440.2015.01.023]
[3]倪萌,王娟,王爽,等.克服萝卜自交不亲和性的化学试剂筛选[J].江苏农业学报,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
 NI Meng,WANG Juan,WANG Shuang,et al.Screening of chemical reagents for overcoming the self-incompatibility of radish[J].,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
[4]程瑞,汪国莲,孙玉东,等.萝卜HAK/KUP/KT基因家族鉴定与表达特性分析[J].江苏农业学报,2023,(03):777.[doi:doi:10.3969/j.issn.1000-4440.2023.03.019]
 CHENG Rui,WANG Guo-lian,SUN Yu-dong,et al.Identification and expression characteristics analysis of HAK/KUP/KT gene family in radish[J].,2023,(04):777.[doi:doi:10.3969/j.issn.1000-4440.2023.03.019]

备注/Memo

备注/Memo:
收稿日期:2017-03-27 基金项目:江苏省自然科学基金(青年基金)项目(BK20130726);江苏省农业科技自主创新基金项目[CX(16)1012] 作者简介:娄丽娜(1982-),女,河南濮阳人,博士,副研究员,研究方向为蔬菜作物遗传育种。(Tel) 025-84391221; (E-mail) linabeibei@163.com 通讯作者:苏小俊,(E-mail)xiaojunsu@yahoo.com
更新日期/Last Update: 2017-09-01